forked from llvm/llvm-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathasin.cpp
286 lines (246 loc) · 9.75 KB
/
asin.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
//===-- Double-precision asin function ------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "src/math/asin.h"
#include "asin_utils.h"
#include "src/__support/FPUtil/FEnvImpl.h"
#include "src/__support/FPUtil/FPBits.h"
#include "src/__support/FPUtil/PolyEval.h"
#include "src/__support/FPUtil/double_double.h"
#include "src/__support/FPUtil/dyadic_float.h"
#include "src/__support/FPUtil/multiply_add.h"
#include "src/__support/FPUtil/sqrt.h"
#include "src/__support/macros/config.h"
#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
#include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA
namespace LIBC_NAMESPACE_DECL {
using DoubleDouble = fputil::DoubleDouble;
using Float128 = fputil::DyadicFloat<128>;
LLVM_LIBC_FUNCTION(double, asin, (double x)) {
using FPBits = fputil::FPBits<double>;
FPBits xbits(x);
int x_exp = xbits.get_biased_exponent();
// |x| < 0.5.
if (x_exp < FPBits::EXP_BIAS - 1) {
// |x| < 2^-26.
if (LIBC_UNLIKELY(x_exp < FPBits::EXP_BIAS - 26)) {
// When |x| < 2^-26, the relative error of the approximation asin(x) ~ x
// is:
// |asin(x) - x| / |asin(x)| < |x^3| / (6|x|)
// = x^2 / 6
// < 2^-54
// < epsilon(1)/2.
// So the correctly rounded values of asin(x) are:
// = x + sign(x)*eps(x) if rounding mode = FE_TOWARDZERO,
// or (rounding mode = FE_UPWARD and x is
// negative),
// = x otherwise.
// To simplify the rounding decision and make it more efficient, we use
// fma(x, 2^-54, x) instead.
// Note: to use the formula x + 2^-54*x to decide the correct rounding, we
// do need fma(x, 2^-54, x) to prevent underflow caused by 2^-54*x when
// |x| < 2^-1022. For targets without FMA instructions, when x is close to
// denormal range, we normalize x,
#if defined(LIBC_MATH_HAS_SKIP_ACCURATE_PASS)
return x;
#elif defined(LIBC_TARGET_CPU_HAS_FMA_DOUBLE)
return fputil::multiply_add(x, 0x1.0p-54, x);
#else
if (xbits.abs().uintval() == 0)
return x;
// Get sign(x) * min_normal.
FPBits eps_bits = FPBits::min_normal();
eps_bits.set_sign(xbits.sign());
double eps = eps_bits.get_val();
double normalize_const = (x_exp == 0) ? eps : 0.0;
double scaled_normal =
fputil::multiply_add(x + normalize_const, 0x1.0p54, eps);
return fputil::multiply_add(scaled_normal, 0x1.0p-54, -normalize_const);
#endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS
}
#ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
return x * asin_eval(x * x);
#else
unsigned idx;
DoubleDouble x_sq = fputil::exact_mult(x, x);
double err = x * 0x1.0p-51;
// Polynomial approximation:
// p ~ asin(x)/x
DoubleDouble p = asin_eval(x_sq, idx, err);
// asin(x) ~ x * (ASIN_COEFFS[idx][0] + p)
DoubleDouble r0 = fputil::exact_mult(x, p.hi);
double r_lo = fputil::multiply_add(x, p.lo, r0.lo);
// Ziv's accuracy test.
double r_upper = r0.hi + (r_lo + err);
double r_lower = r0.hi + (r_lo - err);
if (LIBC_LIKELY(r_upper == r_lower))
return r_upper;
// Ziv's accuracy test failed, perform 128-bit calculation.
// Recalculate mod 1/64.
idx = static_cast<unsigned>(fputil::nearest_integer(x_sq.hi * 0x1.0p6));
// Get x^2 - idx/21 exactly. When FMA is available, double-double
// multiplication will be correct for all rounding modes. Otherwise we use
// Float128 directly.
Float128 x_f128(x);
#ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE
// u = x^2 - idx/64
Float128 u_hi(
fputil::multiply_add(static_cast<double>(idx), -0x1.0p-6, x_sq.hi));
Float128 u = fputil::quick_add(u_hi, Float128(x_sq.lo));
#else
Float128 x_sq_f128 = fputil::quick_mul(x_f128, x_f128);
Float128 u = fputil::quick_add(
x_sq_f128, Float128(static_cast<double>(idx) * (-0x1.0p-6)));
#endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE
Float128 p_f128 = asin_eval(u, idx);
Float128 r = fputil::quick_mul(x_f128, p_f128);
return static_cast<double>(r);
#endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS
}
// |x| >= 0.5
double x_abs = xbits.abs().get_val();
// Maintaining the sign:
constexpr double SIGN[2] = {1.0, -1.0};
double x_sign = SIGN[xbits.is_neg()];
// |x| >= 1
if (LIBC_UNLIKELY(x_exp >= FPBits::EXP_BIAS)) {
// x = +-1, asin(x) = +- pi/2
if (x_abs == 1.0) {
// return +- pi/2
return fputil::multiply_add(x_sign, PI_OVER_TWO.hi,
x_sign * PI_OVER_TWO.lo);
}
// |x| > 1, return NaN.
if (xbits.is_finite()) {
fputil::set_errno_if_required(EDOM);
fputil::raise_except_if_required(FE_INVALID);
} else if (xbits.is_signaling_nan()) {
fputil::raise_except_if_required(FE_INVALID);
}
return FPBits::quiet_nan().get_val();
}
// When |x| >= 0.5, we perform range reduction as follow:
//
// Assume further that 0.5 <= x < 1, and let:
// y = asin(x)
// We will use the double angle formula:
// cos(2y) = 1 - 2 sin^2(y)
// and the complement angle identity:
// x = sin(y) = cos(pi/2 - y)
// = 1 - 2 sin^2 (pi/4 - y/2)
// So:
// sin(pi/4 - y/2) = sqrt( (1 - x)/2 )
// And hence:
// pi/4 - y/2 = asin( sqrt( (1 - x)/2 ) )
// Equivalently:
// asin(x) = y = pi/2 - 2 * asin( sqrt( (1 - x)/2 ) )
// Let u = (1 - x)/2, then:
// asin(x) = pi/2 - 2 * asin( sqrt(u) )
// Moreover, since 0.5 < x <= 1:
// 0 <= u < 1/4, and 0 <= sqrt(u) < 0.5,
// And hence we can reuse the same polynomial approximation of asin(x) when
// |x| <= 0.5:
// asin(x) ~ pi/2 - 2 * sqrt(u) * P(u),
// u = (1 - |x|)/2
double u = fputil::multiply_add(x_abs, -0.5, 0.5);
// v_hi + v_lo ~ sqrt(u).
// Let:
// h = u - v_hi^2 = (sqrt(u) - v_hi) * (sqrt(u) + v_hi)
// Then:
// sqrt(u) = v_hi + h / (sqrt(u) + v_hi)
// ~ v_hi + h / (2 * v_hi)
// So we can use:
// v_lo = h / (2 * v_hi).
// Then,
// asin(x) ~ pi/2 - 2*(v_hi + v_lo) * P(u)
double v_hi = fputil::sqrt<double>(u);
#ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
double p = asin_eval(u);
double r = x_sign * fputil::multiply_add(-2.0 * v_hi, p, PI_OVER_TWO.hi);
return r;
#else
#ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE
double h = fputil::multiply_add(v_hi, -v_hi, u);
#else
DoubleDouble v_hi_sq = fputil::exact_mult(v_hi, v_hi);
double h = (u - v_hi_sq.hi) - v_hi_sq.lo;
#endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE
// Scale v_lo and v_hi by 2 from the formula:
// vh = v_hi * 2
// vl = 2*v_lo = h / v_hi.
double vh = v_hi * 2.0;
double vl = h / v_hi;
// Polynomial approximation:
// p ~ asin(sqrt(u))/sqrt(u)
unsigned idx;
double err = vh * 0x1.0p-51;
DoubleDouble p = asin_eval(DoubleDouble{0.0, u}, idx, err);
// Perform computations in double-double arithmetic:
// asin(x) = pi/2 - (v_hi + v_lo) * (ASIN_COEFFS[idx][0] + p)
DoubleDouble r0 = fputil::quick_mult(DoubleDouble{vl, vh}, p);
DoubleDouble r = fputil::exact_add(PI_OVER_TWO.hi, -r0.hi);
double r_lo = PI_OVER_TWO.lo - r0.lo + r.lo;
// Ziv's accuracy test.
#ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE
double r_upper = fputil::multiply_add(
r.hi, x_sign, fputil::multiply_add(r_lo, x_sign, err));
double r_lower = fputil::multiply_add(
r.hi, x_sign, fputil::multiply_add(r_lo, x_sign, -err));
#else
r_lo *= x_sign;
r.hi *= x_sign;
double r_upper = r.hi + (r_lo + err);
double r_lower = r.hi + (r_lo - err);
#endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE
if (LIBC_LIKELY(r_upper == r_lower))
return r_upper;
// Ziv's accuracy test failed, we redo the computations in Float128.
// Recalculate mod 1/64.
idx = static_cast<unsigned>(fputil::nearest_integer(u * 0x1.0p6));
// After the first step of Newton-Raphson approximating v = sqrt(u), we have
// that:
// sqrt(u) = v_hi + h / (sqrt(u) + v_hi)
// v_lo = h / (2 * v_hi)
// With error:
// sqrt(u) - (v_hi + v_lo) = h * ( 1/(sqrt(u) + v_hi) - 1/(2*v_hi) )
// = -h^2 / (2*v * (sqrt(u) + v)^2).
// Since:
// (sqrt(u) + v_hi)^2 ~ (2sqrt(u))^2 = 4u,
// we can add another correction term to (v_hi + v_lo) that is:
// v_ll = -h^2 / (2*v_hi * 4u)
// = -v_lo * (h / 4u)
// = -vl * (h / 8u),
// making the errors:
// sqrt(u) - (v_hi + v_lo + v_ll) = O(h^3)
// well beyond 128-bit precision needed.
// Get the rounding error of vl = 2 * v_lo ~ h / vh
// Get full product of vh * vl
#ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE
double vl_lo = fputil::multiply_add(-v_hi, vl, h) / v_hi;
#else
DoubleDouble vh_vl = fputil::exact_mult(v_hi, vl);
double vl_lo = ((h - vh_vl.hi) - vh_vl.lo) / v_hi;
#endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE
// vll = 2*v_ll = -vl * (h / (4u)).
double t = h * (-0.25) / u;
double vll = fputil::multiply_add(vl, t, vl_lo);
// m_v = -(v_hi + v_lo + v_ll).
Float128 m_v = fputil::quick_add(
Float128(vh), fputil::quick_add(Float128(vl), Float128(vll)));
m_v.sign = Sign::NEG;
// Perform computations in Float128:
// asin(x) = pi/2 - (v_hi + v_lo + vll) * P(u).
Float128 y_f128(fputil::multiply_add(static_cast<double>(idx), -0x1.0p-6, u));
Float128 p_f128 = asin_eval(y_f128, idx);
Float128 r0_f128 = fputil::quick_mul(m_v, p_f128);
Float128 r_f128 = fputil::quick_add(PI_OVER_TWO_F128, r0_f128);
if (xbits.is_neg())
r_f128.sign = Sign::NEG;
return static_cast<double>(r_f128);
#endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS
}
} // namespace LIBC_NAMESPACE_DECL