Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
77 changes: 77 additions & 0 deletions tests/utils/benchmarking/test_online_linear_classifier.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
import pytest
import torch
from pytorch_lightning import LightningModule, Trainer
from torch import Tensor, nn
from torch.optim import SGD
from torch.utils.data import DataLoader
from torchvision.datasets import FakeData
from torchvision.transforms import ToTensor

from lightly.utils.benchmarking import OnlineLinearClassifier


class TestOnlineLinearClassifier:
def test__cpu(self) -> None:
self._test(accelerator="cpu")

@pytest.mark.skipif(not torch.cuda.is_available(), reason="CUDA not available")
def test__cuda(self) -> None:
self._test(accelerator="gpu")

def _test(self, accelerator: str) -> None:
dataset = FakeData(
size=10, image_size=(3, 8, 8), num_classes=5, transform=ToTensor()
)
train_dataloader = DataLoader(dataset, batch_size=2)
val_dataloader = DataLoader(dataset, batch_size=2)
model = _DummyModule()
trainer = Trainer(
max_epochs=1, accelerator=accelerator, devices=1, log_every_n_steps=1
)
trainer.fit(
model=model,
train_dataloaders=train_dataloader,
val_dataloaders=val_dataloader,
)
assert trainer.callback_metrics["train_online_cls_loss"].item() >= 0
assert trainer.callback_metrics["train_online_cls_top1"].item() >= 0
assert (
trainer.callback_metrics["train_online_cls_top5"].item()
>= trainer.callback_metrics["train_online_cls_top1"].item()
)
assert trainer.callback_metrics["train_online_cls_top5"].item() <= 1
assert trainer.callback_metrics["val_online_cls_loss"].item() >= 0
assert trainer.callback_metrics["val_online_cls_top1"].item() >= 0
assert (
trainer.callback_metrics["val_online_cls_top5"].item()
>= trainer.callback_metrics["val_online_cls_top1"].item()
)
assert trainer.callback_metrics["val_online_cls_top5"].item() <= 1


class _DummyModule(LightningModule):
def __init__(self) -> None:
super().__init__()
self.linear = nn.Sequential(nn.Flatten(), nn.Linear(3 * 8 * 8, 3))
self.online_classifier = OnlineLinearClassifier(feature_dim=3, num_classes=5)

def training_step(self, batch, batch_idx) -> Tensor:
images, targets = batch[0], batch[1]
features = self.linear(images)
cls_loss, cls_log = self.online_classifier.training_step(
(features, targets), batch_idx
)
self.log_dict(cls_log)
return cls_loss

def validation_step(self, batch, batch_idx) -> Tensor:
images, targets = batch[0], batch[1]
features = self.linear(images)
cls_loss, cls_log = self.online_classifier.validation_step(
(features, targets), batch_idx
)
self.log_dict(cls_log)
return cls_loss

def configure_optimizers(self) -> SGD:
return SGD(self.parameters(), lr=0.1)