-
Notifications
You must be signed in to change notification settings - Fork 5.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
7 changed files
with
620 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,79 @@ | ||
# Noise Processor | ||
|
||
The *Noise* processor is used to add noise to numerical field values. For each field a noise is generated using a defined probability densitiy function and added to the value. The function type can be configured as _Laplace_, _Gaussian_ or _Uniform_. | ||
Depending on the function, various parameters need to be configured: | ||
|
||
## Configuration | ||
|
||
Depending on the choice of the distribution function, the respective parameters must be set. Default settings are `noise_type = "laplacian"` with `mu = 0.0` and `scale = 1.0`: | ||
|
||
```toml | ||
[[processors.noise]] | ||
## Specified the type of the random distribution. | ||
## Can be "laplacian", "gaussian" or "uniform". | ||
# type = "laplacian | ||
|
||
## Center of the distribution. | ||
## Only used for Laplacian and Gaussian distributions. | ||
# mu = 0.0 | ||
|
||
## Scale parameter for the Laplacian or Gaussian distribution | ||
# scale = 1.0 | ||
|
||
## Upper and lower bound of the Uniform distribution | ||
# min = -1.0 | ||
# max = 1.0 | ||
|
||
## Apply the noise only to numeric fields matching the filter criteria below. | ||
## Excludes takes precedence over includes. | ||
# include_fields = [] | ||
# exclude_fields = [] | ||
``` | ||
|
||
Using the `include_fields` and `exclude_fields` options a filter can be configured to apply noise only to numeric fields matching it. | ||
The following distribution functions are available. | ||
|
||
### Laplacian | ||
|
||
* `noise_type = laplacian` | ||
* `scale`: also referred to as _diversity_ parameter, regulates the width & height of the function, a bigger `scale` value means a higher probability of larger noise, default set to 1.0 | ||
* `mu`: location of the curve, default set to 0.0 | ||
|
||
### Gaussian | ||
|
||
* `noise_type = gaussian` | ||
* `mu`: mean value, default set to 0.0 | ||
* `scale`: standard deviation, default set to 1.0 | ||
|
||
### Uniform | ||
|
||
* `noise_type = uniform` | ||
* `min`: minimal interval value, default set to -1.0 | ||
* `max`: maximal interval value, default set to 1.0 | ||
|
||
## Example | ||
|
||
Add noise to each value the *Inputs.CPU* plugin generates, except for the _usage\_steal_, _usage\_user_, _uptime\_format_, _usage\_idle_ field and all fields of the metrics _swap_, _disk_ and _net_: | ||
|
||
```toml | ||
[[inputs.cpu]] | ||
percpu = true | ||
totalcpu = true | ||
collect_cpu_time = false | ||
report_active = false | ||
|
||
[[processors.noise]] | ||
scale = 1.0 | ||
mu = 0.0 | ||
noise_type = "laplacian" | ||
include_fields = [] | ||
exclude_fields = ["usage_steal", "usage_user", "uptime_format", "usage_idle" ] | ||
namedrop = ["swap", "disk", "net"] | ||
``` | ||
|
||
Result of noise added to the _cpu_ metric: | ||
|
||
```diff | ||
- cpu map[cpu:cpu11 host:98d5b8dbad1c] map[usage_guest:0 usage_guest_nice:0 usage_idle:94.3999999994412 usage_iowait:0 usage_irq:0.1999999999998181 usage_nice:0 usage_softirq:0.20000000000209184 usage_steal:0 usage_system:1.2000000000080036 usage_user:4.000000000014552] | ||
+ cpu map[cpu:cpu11 host:98d5b8dbad1c] map[usage_guest:1.0078071583066057 usage_guest_nice:0.523063861602435 usage_idle:95.53920223476884 usage_iowait:0.5162661526251292 usage_irq:0.7138529816101375 usage_nice:0.6119678488887954 usage_softirq:0.5573585443688622 usage_steal:0.2006120911289802 usage_system:1.2954475820198437 usage_user:6.885664792615023] | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,156 @@ | ||
package noise | ||
|
||
import ( | ||
"fmt" | ||
"math" | ||
"reflect" | ||
|
||
"github.com/influxdata/telegraf" | ||
"github.com/influxdata/telegraf/filter" | ||
"github.com/influxdata/telegraf/plugins/processors" | ||
"gonum.org/v1/gonum/stat/distuv" | ||
) | ||
|
||
const ( | ||
defaultScale = 1.0 | ||
defaultMin = -1.0 | ||
defaultMax = 1.0 | ||
defaultMu = 0.0 | ||
defaultNoiseType = "laplacian" | ||
) | ||
|
||
const sampleConfig = ` | ||
## Specified the type of the random distribution. | ||
## Can be "laplacian", "gaussian" or "uniform". | ||
# type = "laplacian | ||
## Center of the distribution. | ||
## Only used for Laplacian and Gaussian distributions. | ||
# mu = 0.0 | ||
## Scale parameter for the Laplacian or Gaussian distribution | ||
# scale = 1.0 | ||
## Upper and lower bound of the Uniform distribution | ||
# min = -1.0 | ||
# max = 1.0 | ||
## Apply the noise only to numeric fields matching the filter criteria below. | ||
## Excludes takes precedence over includes. | ||
# include_fields = [] | ||
# exclude_fields = [] | ||
` | ||
|
||
type Noise struct { | ||
Scale float64 `toml:"scale"` | ||
Min float64 `toml:"min"` | ||
Max float64 `toml:"max"` | ||
Mu float64 `toml:"mu"` | ||
IncludeFields []string `toml:"include_fields"` | ||
ExcludeFields []string `toml:"exclude_fields"` | ||
NoiseType string `toml:"type"` | ||
Log telegraf.Logger `toml:"-"` | ||
generator distuv.Rander | ||
fieldFilter filter.Filter | ||
} | ||
|
||
func (p *Noise) SampleConfig() string { | ||
return sampleConfig | ||
} | ||
|
||
func (p *Noise) Description() string { | ||
return "Adds noise to numerical fields" | ||
} | ||
|
||
// generates a random noise value depending on the defined probability density | ||
// function and adds that to the original value. If any integer overflows | ||
// happen during the calculation, the result is set to MaxInt or 0 (for uint) | ||
func (p *Noise) addNoise(value interface{}) interface{} { | ||
n := p.generator.Rand() | ||
switch v := value.(type) { | ||
case int: | ||
case int8: | ||
case int16: | ||
case int32: | ||
case int64: | ||
if v > 0 && (n > math.Nextafter(float64(math.MaxInt64), 0) || int64(n) > math.MaxInt64-v) { | ||
p.Log.Debug("Int64 overflow, setting value to MaxInt64") | ||
return int64(math.MaxInt64) | ||
} | ||
if v < 0 && (n < math.Nextafter(float64(math.MinInt64), 0) || int64(n) < math.MinInt64-v) { | ||
p.Log.Debug("Int64 (negative) overflow, setting value to MinInt64") | ||
return int64(math.MinInt64) | ||
} | ||
return v + int64(n) | ||
case uint: | ||
case uint8: | ||
case uint16: | ||
case uint32: | ||
case uint64: | ||
if n < 0 { | ||
if uint64(-n) > v { | ||
p.Log.Debug("Uint64 (negative) overflow, setting value to 0") | ||
return uint64(0) | ||
} | ||
return v - uint64(-n) | ||
} | ||
if n > math.Nextafter(float64(math.MaxUint64), 0) || uint64(n) > math.MaxUint64-v { | ||
p.Log.Debug("Uint64 overflow, setting value to MaxUint64") | ||
return uint64(math.MaxUint64) | ||
} | ||
return v + uint64(n) | ||
case float32: | ||
return v + float32(n) | ||
case float64: | ||
return v + n | ||
default: | ||
p.Log.Debugf("Value (%v) type invalid: [%v] is not an int, uint or float", v, reflect.TypeOf(value)) | ||
} | ||
return value | ||
} | ||
|
||
// Creates a filter for Include and Exclude fields and sets the desired noise | ||
// distribution | ||
func (p *Noise) Init() error { | ||
fieldFilter, err := filter.NewIncludeExcludeFilter(p.IncludeFields, p.ExcludeFields) | ||
if err != nil { | ||
return fmt.Errorf("creating fieldFilter failed: %v", err) | ||
} | ||
p.fieldFilter = fieldFilter | ||
|
||
switch p.NoiseType { | ||
case "", "laplacian": | ||
p.generator = &distuv.Laplace{Mu: p.Mu, Scale: p.Scale} | ||
case "uniform": | ||
p.generator = &distuv.Uniform{Min: p.Min, Max: p.Max} | ||
case "gaussian": | ||
p.generator = &distuv.Normal{Mu: p.Mu, Sigma: p.Scale} | ||
default: | ||
return fmt.Errorf("unknown distribution type %q", p.NoiseType) | ||
} | ||
return nil | ||
} | ||
|
||
func (p *Noise) Apply(metrics ...telegraf.Metric) []telegraf.Metric { | ||
for _, metric := range metrics { | ||
for _, field := range metric.FieldList() { | ||
if !p.fieldFilter.Match(field.Key) { | ||
continue | ||
} | ||
field.Value = p.addNoise(field.Value) | ||
} | ||
} | ||
return metrics | ||
} | ||
|
||
func init() { | ||
processors.Add("noise", func() telegraf.Processor { | ||
return &Noise{ | ||
NoiseType: defaultNoiseType, | ||
Mu: defaultMu, | ||
Scale: defaultScale, | ||
Min: defaultMin, | ||
Max: defaultMax, | ||
} | ||
}) | ||
} |
Oops, something went wrong.