Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Refactor Online DPO #1839

Merged
merged 103 commits into from
Aug 28, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
103 commits
Select commit Hold shift + click to select a range
94353cb
online dpo trainer based on rloo trainer
mnoukhov Jul 3, 2024
d88ee55
push changes
vwxyzjn Jul 5, 2024
1a45ec4
refactor
vwxyzjn Jul 9, 2024
5a3bd05
use `batch_generation` method
vwxyzjn Jul 9, 2024
aa67767
precommit
vwxyzjn Jul 9, 2024
576c098
remove breakpoint()
vwxyzjn Jul 9, 2024
c5a1612
quick refactor
vwxyzjn Jul 9, 2024
e264126
push the current changes
vwxyzjn Jul 11, 2024
9653edb
quick change
vwxyzjn Jul 15, 2024
798d1d6
refactor
vwxyzjn Jul 15, 2024
6562bc2
use the config name as the experiment name
vwxyzjn Jul 15, 2024
7a0c273
fix logging
vwxyzjn Jul 16, 2024
7e03124
update online DPO docs
vwxyzjn Jul 16, 2024
0f8b1e3
use llm as a judge
vwxyzjn Jul 17, 2024
1f0f6b2
quick change
vwxyzjn Jul 17, 2024
ac11b75
quick fix
vwxyzjn Jul 18, 2024
2a7abca
cache changes
vwxyzjn Jul 18, 2024
a177097
Merge branch 'main' into online-dpo-llmjudge
qgallouedec Aug 1, 2024
e74646f
new semantics
qgallouedec Aug 1, 2024
c93c81b
style and arg order change
qgallouedec Aug 1, 2024
ff479e4
rm duplicated num_epochs
qgallouedec Aug 1, 2024
f39c61a
rm plot script
qgallouedec Aug 1, 2024
e515d0e
num_epoch
qgallouedec Aug 1, 2024
0d8ae8c
revert some changes
qgallouedec Aug 1, 2024
0641b55
revert changes
qgallouedec Aug 1, 2024
25af762
revert whitespace
qgallouedec Aug 1, 2024
29a1244
rm whitespace
qgallouedec Aug 1, 2024
d858b28
revert change
qgallouedec Aug 1, 2024
4020f41
policy->model
qgallouedec Aug 1, 2024
8d26a51
Merge branch 'main' into online-dpo-llmjudge
qgallouedec Aug 2, 2024
b1a264a
optional judge and reward model
qgallouedec Aug 2, 2024
79082f8
cleaning online dpo script
qgallouedec Aug 2, 2024
9554c80
warning when both reward mdoel and judge provided
qgallouedec Aug 2, 2024
e73c66f
Merge branch 'online-dpo-llmjudge' of https://github.com/huggingface/…
qgallouedec Aug 2, 2024
e793dde
Merge branch 'main' into online-dpo-llmjudge
qgallouedec Aug 9, 2024
2d0a8a1
return -1 when the judge fails
qgallouedec Aug 9, 2024
9580a8d
dataset num proc
qgallouedec Aug 9, 2024
14be7b7
add judges in online dpo; fix collate and process within the trainer
qgallouedec Aug 9, 2024
1b7cdcf
lr_scheduler.step() after optimizer step
qgallouedec Aug 11, 2024
e58d473
update odpo test
qgallouedec Aug 11, 2024
da70ab0
Merge branch 'main' into online-dpo-llmjudge
qgallouedec Aug 13, 2024
ced7c98
reduce nestiness
qgallouedec Aug 13, 2024
e14eb43
allow pickle
qgallouedec Aug 13, 2024
629b6f1
generation config typing
qgallouedec Aug 13, 2024
4459efd
online dpo llm judge
qgallouedec Aug 13, 2024
c7680c7
fix data collator pad token
qgallouedec Aug 13, 2024
d3d5175
add space
qgallouedec Aug 13, 2024
94f142e
fix pref score
qgallouedec Aug 14, 2024
5a0b4e9
-1 for judges
qgallouedec Aug 14, 2024
ddac3b6
self.model_wrapped = self.model
qgallouedec Aug 14, 2024
031b6de
Merge branch 'main' into online-dpo-llmjudge
qgallouedec Aug 15, 2024
3e2cfe5
onlinedpo inherits from training arguments
qgallouedec Aug 19, 2024
595c07e
num_epoch -> num_steps_in_epochs
qgallouedec Aug 19, 2024
518c896
update -> epoch
qgallouedec Aug 19, 2024
5c9fd95
epoch -> step; step_in_epoch -> ppo_epoch; rm run_name
qgallouedec Aug 19, 2024
85c7bd5
num_steps_in_epoch -> num_ppo_epochs
qgallouedec Aug 19, 2024
2989a68
epoch_idx -> ppo_epoch_idx
qgallouedec Aug 19, 2024
435bacd
make init consistent with dpo
qgallouedec Aug 19, 2024
31d684d
try another option
qgallouedec Aug 20, 2024
8fdbaa4
progress...
qgallouedec Aug 20, 2024
b369beb
odpo
qgallouedec Aug 20, 2024
d9c9736
current progress
qgallouedec Aug 23, 2024
48c449a
log and other changes
qgallouedec Aug 24, 2024
238ac5a
rename for legacy
qgallouedec Aug 24, 2024
3a37e3c
rename for legacy
qgallouedec Aug 24, 2024
4d73ee3
rename and move truncate
qgallouedec Aug 24, 2024
ba23435
rename
qgallouedec Aug 24, 2024
2db55aa
new config
qgallouedec Aug 24, 2024
49a7d47
LogCompletionsCallback
qgallouedec Aug 24, 2024
f330c18
style
qgallouedec Aug 24, 2024
a1d9ba3
rename trainer
qgallouedec Aug 24, 2024
dfebb9f
truncate right in utils
qgallouedec Aug 24, 2024
4664b05
update example
qgallouedec Aug 24, 2024
9b808ca
reward model path
qgallouedec Aug 24, 2024
66ca5bd
properly log
qgallouedec Aug 24, 2024
3d280b9
fix example
qgallouedec Aug 24, 2024
2d28ad9
add generation prompt and log special tokens
qgallouedec Aug 25, 2024
8f28f4f
true penalty
qgallouedec Aug 26, 2024
f936692
defaults from the paper
qgallouedec Aug 26, 2024
55475e4
Merge branch 'main' into online-dpo-llmjudge
qgallouedec Aug 26, 2024
845c1bc
Remove MPS (#1983)
lewtun Aug 27, 2024
3ed03a4
Merge branch 'main' into online-dpo-llmjudge
lewtun Aug 27, 2024
a567e77
Set KV cache false when gradient checkpointing is enabled (#1984)
lewtun Aug 27, 2024
21104fd
Various tweask
lewtun Aug 27, 2024
8a033c7
Remove padding from table
lewtun Aug 27, 2024
4fd0666
Clean up
lewtun Aug 27, 2024
b36dc0e
Fix test
lewtun Aug 27, 2024
8db4b71
Revert log freq
lewtun Aug 27, 2024
0e5a23b
Merge branch 'main' into online-dpo-llmjudge
lewtun Aug 27, 2024
4439a9a
Fix docs
lewtun Aug 27, 2024
35eff1d
Fix tests aain!
lewtun Aug 27, 2024
a64721d
Fix typo
lewtun Aug 27, 2024
ae4a1ed
Revert
lewtun Aug 27, 2024
0b6ac0e
Fix regression
lewtun Aug 27, 2024
dab37dc
Apply suggestions from code review
lewtun Aug 27, 2024
bb267fb
Fix DPO config test
lewtun Aug 27, 2024
6b7d559
Fix doc tree
lewtun Aug 27, 2024
56afe56
Clean docs moar
lewtun Aug 28, 2024
f78ff61
Add docstring
lewtun Aug 28, 2024
bc13c33
raise NotImplemented error for judge
qgallouedec Aug 28, 2024
03ea0af
Merge branch 'main' into online-dpo-llmjudge
lewtun Aug 28, 2024
57eb673
Refactor cache clearning
lewtun Aug 28, 2024
3ea2654
Merge branch 'main' into online-dpo-llmjudge
lewtun Aug 28, 2024
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions docs/source/_toctree.yml
Original file line number Diff line number Diff line change
Expand Up @@ -31,12 +31,12 @@
title: PPOv2 Trainer
- local: rloo_trainer
title: RLOO Trainer
- local: online_dpo_trainer
title: Online DPO Trainer
- local: best_of_n
title: Best of N Sampling
- local: dpo_trainer
title: DPO Trainer
- local: online_dpo_trainer
title: Online DPO Trainer
- local: kto_trainer
title: KTO Trainer
- local: bco_trainer
Expand Down
340 changes: 133 additions & 207 deletions docs/source/online_dpo_trainer.md

Large diffs are not rendered by default.

108 changes: 108 additions & 0 deletions examples/scripts/dpo_online.py
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I renamed it with dpo_ prefix to gather the script with the other dpo ones

Original file line number Diff line number Diff line change
@@ -0,0 +1,108 @@
# flake8: noqa
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage:

python examples/scripts/dpo_online.py \
--model_name_or_path trl-lib/pythia-1b-deduped-tldr-sft \
--reward_model_path trl-lib/pythia-1b-deduped-tldr-rm \
--dataset_name trl-lib/tldr \
--learning_rate 5.0e-7 \
--output_dir pythia-1b-tldr-online-dpo \
--per_device_train_batch_size 4 \
--gradient_accumulation_steps 32 \
--num_train_epochs 3 \
--completion_length 53 \
--warmup_ratio 0.1 \
--missing_eos_penalty 1.0 \
--push_to_hub
"""

import torch
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoModelForSequenceClassification, AutoTokenizer
from accelerate import PartialState
from trl import (
DPOScriptArguments,
ModelConfig,
OnlineDPOConfig,
OnlineDPOTrainer,
get_kbit_device_map,
get_quantization_config,
)
from trl.commands.cli_utils import TrlParser
from trl.trainer.callbacks import LogCompletionsCallback
from trl.trainer.utils import SIMPLE_QUERY_CHAT_TEMPLATE

if __name__ == "__main__":
parser = TrlParser((DPOScriptArguments, OnlineDPOConfig, ModelConfig))
args, training_args, model_config = parser.parse_args_and_config()
args.gradient_checkpointing_kwargs = {"use_reentrant": True}

torch_dtype = (
model_config.torch_dtype
if model_config.torch_dtype in ["auto", None]
else getattr(torch, model_config.torch_dtype)
)
quantization_config = get_quantization_config(model_config)
model_kwargs = dict(
revision=model_config.model_revision,
attn_implementation=model_config.attn_implementation,
torch_dtype=torch_dtype,
use_cache=False if training_args.gradient_checkpointing else True,
device_map=get_kbit_device_map() if quantization_config is not None else None,
quantization_config=quantization_config,
)

model = AutoModelForCausalLM.from_pretrained(
model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code, **model_kwargs
)
ref_model = AutoModelForCausalLM.from_pretrained(
model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code, **model_kwargs
)
reward_model = AutoModelForSequenceClassification.from_pretrained(
training_args.reward_model_path, num_labels=1, trust_remote_code=model_config.trust_remote_code
)
tokenizer = AutoTokenizer.from_pretrained(
model_config.model_name_or_path,
padding_side="left",
trust_remote_code=model_config.trust_remote_code,
)
if tokenizer.chat_template is None:
tokenizer.chat_template = SIMPLE_QUERY_CHAT_TEMPLATE

dataset = load_dataset(args.dataset_name)

def prepare_dataset(row):
row["prompt"] = tokenizer.apply_chat_template(row["prompt"], tokenize=False, add_generation_prompt=True)
return row

with PartialState().local_main_process_first():
dataset = dataset.map(prepare_dataset, num_proc=training_args.dataset_num_proc)

prompts = dataset[args.dataset_test_split]["prompt"][:8]

trainer = OnlineDPOTrainer(
model=model,
ref_model=ref_model,
reward_model=reward_model,
args=training_args,
train_dataset=dataset[args.dataset_train_split],
eval_dataset=dataset[args.dataset_test_split],
tokenizer=tokenizer,
)
log_completions_callback = LogCompletionsCallback(prompts)
trainer.add_callback(log_completions_callback)
trainer.train()
132 changes: 0 additions & 132 deletions examples/scripts/online_dpo.py

This file was deleted.

41 changes: 9 additions & 32 deletions tests/test_online_dpo_trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,11 +28,6 @@ def setUp(self):
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
self.tokenizer.pad_token = self.tokenizer.eos_token

def _get_dummy_model_and_tokenizer(self):
# Return dummy model and tokenizer. This is a placeholder.
return self.model, self.tokenizer, self.reward_model

def _init_dummy_dataset(self):
# fmt: off
dummy_dataset_dict = {
"prompt": [
Expand Down Expand Up @@ -70,31 +65,13 @@ def _init_dummy_dataset(self):
],
}
# fmt: on
return Dataset.from_dict(dummy_dataset_dict)
self.dummy_dataset = Dataset.from_dict(dummy_dataset_dict)

@unittest.skip(
"This test fails with the latest transformers version. We skip it as we are about "
"to refactor the `OnlineDPOTrainer`. See PR #1839."
)
def test_online_dpo_trainer_training(self):
model, tokenizer, reward_model = self._get_dummy_model_and_tokenizer()
dummy_dataset = self._init_dummy_dataset()

def tokenize(element):
outputs = tokenizer(
element["prompt"],
padding=False,
)
return {"input_ids": outputs["input_ids"]}

dummy_dataset = dummy_dataset.map(
tokenize,
remove_columns=dummy_dataset.column_names,
batched=True,
num_proc=4,
load_from_cache_file=False,
)

with tempfile.TemporaryDirectory() as tmp_dir:
training_args = OnlineDPOConfig(
output_dir=tmp_dir,
Expand All @@ -108,16 +85,16 @@ def tokenize(element):
)

trainer = OnlineDPOTrainer(
model=model,
ref_model=model,
reward_model=reward_model,
config=training_args,
tokenizer=tokenizer,
train_dataset=dummy_dataset,
eval_dataset=dummy_dataset,
model=self.model,
ref_model=self.model,
reward_model=self.reward_model,
args=training_args,
tokenizer=self.tokenizer,
train_dataset=self.dummy_dataset,
eval_dataset=self.dummy_dataset,
)

trainer.train()

# Check if training loss is available
self.assertIn("loss/policy_avg", trainer.state.log_history[-1])
self.assertIn("train_loss", trainer.state.log_history[-1])
Loading
Loading