-
Notifications
You must be signed in to change notification settings - Fork 26.8k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
133 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,133 @@ | ||
# coding=utf-8 | ||
# Copyright 2024 The HuggingFace Inc. team. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
""" | ||
Processor class for Mllama. | ||
""" | ||
|
||
from typing import List, Optional, Union | ||
|
||
from ...feature_extraction_utils import BatchFeature | ||
from ...image_utils import ImageInput | ||
from ...processing_utils import ProcessorMixin | ||
from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy | ||
from ...utils import TensorType | ||
|
||
|
||
class MllamaProcessor(ProcessorMixin): | ||
r""" | ||
Constructs a Mllama processor which wraps a Mllama image processor and a Mllama tokenizer into a single processor. | ||
[`MllamaProcessor`] offers all the functionalities of [`MllamaImageProcessor`] and [`MllamaTokenizerFast`]. See the | ||
[`~MllamaProcessor.__call__`] and [`~MllamaProcessor.decode`] for more information. | ||
Args: | ||
image_processor ([`MllamaImageProcessor`], *optional*): | ||
The image processor is a required input. | ||
tokenizer ([`MllamaTokenizerFast`], *optional*): | ||
The tokenizer is a required input. | ||
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages | ||
in a chat into a tokenizable string. | ||
""" | ||
|
||
attributes = ["image_processor", "tokenizer"] | ||
image_processor_class = "AutoImageProcessor" | ||
tokenizer_class = "AutoTokenizer" | ||
|
||
def __init__(self, image_processor=None, tokenizer=None, chat_template=None): | ||
super().__init__(image_processor, tokenizer, chat_template=chat_template) | ||
|
||
def __call__( | ||
self, | ||
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, | ||
images: ImageInput = None, | ||
padding: Union[bool, str, PaddingStrategy] = False, | ||
truncation: Union[bool, str, TruncationStrategy] = None, | ||
max_length=None, | ||
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, | ||
) -> BatchFeature: | ||
""" | ||
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` | ||
and `kwargs` arguments to MllamaTokenizerFast's [`~MllamaTokenizerFast.__call__`] if `text` is not `None` to encode | ||
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to | ||
MllamaImageProcessor's [`~MllamaImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring | ||
of the above two methods for more information. | ||
Args: | ||
text (`str`, `List[str]`, `List[List[str]]`): | ||
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings | ||
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set | ||
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences). | ||
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): | ||
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch | ||
tensor. Both channels-first and channels-last formats are supported. | ||
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): | ||
Select a strategy to pad the returned sequences (according to the model's padding side and padding | ||
index) among: | ||
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single | ||
sequence if provided). | ||
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum | ||
acceptable input length for the model if that argument is not provided. | ||
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different | ||
lengths). | ||
max_length (`int`, *optional*): | ||
Maximum length of the returned list and optionally padding length (see above). | ||
truncation (`bool`, *optional*): | ||
Activates truncation to cut input sequences longer than `max_length` to `max_length`. | ||
return_tensors (`str` or [`~utils.TensorType`], *optional*): | ||
If set, will return tensors of a particular framework. Acceptable values are: | ||
- `'tf'`: Return TensorFlow `tf.constant` objects. | ||
- `'pt'`: Return PyTorch `torch.Tensor` objects. | ||
- `'np'`: Return NumPy `np.ndarray` objects. | ||
- `'jax'`: Return JAX `jnp.ndarray` objects. | ||
Returns: | ||
[`BatchFeature`]: A [`BatchFeature`] with the following fields: | ||
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. | ||
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when | ||
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not | ||
`None`). | ||
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. | ||
""" | ||
if images is not None: | ||
pixel_values = self.image_processor(images, return_tensors=return_tensors)["pixel_values"] | ||
else: | ||
pixel_values = None | ||
text_inputs = self.tokenizer( | ||
text, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length | ||
) | ||
|
||
return BatchFeature(data={**text_inputs, "pixel_values": pixel_values}) | ||
|
||
def batch_decode(self, *args, **kwargs): | ||
""" | ||
This method forwards all its arguments to MllamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please | ||
refer to the docstring of this method for more information. | ||
""" | ||
return self.tokenizer.batch_decode(*args, **kwargs) | ||
|
||
def decode(self, *args, **kwargs): | ||
""" | ||
This method forwards all its arguments to MllamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to | ||
the docstring of this method for more information. | ||
""" | ||
return self.tokenizer.decode(*args, **kwargs) | ||
|
||
@property | ||
def model_input_names(self): | ||
tokenizer_input_names = self.tokenizer.model_input_names | ||
image_processor_input_names = self.image_processor.model_input_names | ||
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) |