Skip to content

Commit

Permalink
add dummy config
Browse files Browse the repository at this point in the history
  • Loading branch information
molbap committed Jul 4, 2024
1 parent bfa2eb8 commit 55e8811
Showing 1 changed file with 133 additions and 0 deletions.
133 changes: 133 additions & 0 deletions src/transformers/models/mllama/configuration_mllama.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,133 @@
# coding=utf-8
# Copyright 2024 Microsoft Research & University of Wisconsin-Madison and the HuggingFace Inc. team. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Mllama model configuration"""

import warnings

from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING


logger = logging.get_logger(__name__)


class MllamaConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MllamaForConditionalGeneration`]. It is used to instantiate an
Mllama model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the Mllama-9B.
e.g. [mllama-hf/mllama-9b](https://huggingface.co/mllama-hf/mllama-9b)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vision_config (`Union[AutoConfig, dict]`, *optional*, defaults to `CLIPVisionConfig`):
The config object or dictionary of the vision backbone.
text_config (`Union[AutoConfig, dict]`, *optional*, defaults to `LlamaConfig`):
The config object or dictionary of the text backbone.
ignore_index (`int`, *optional*, defaults to -100):
The ignore index for the loss function.
image_token_index (`int`, *optional*, defaults to 32000):
The image token index to encode the image prompt.
projector_hidden_act (`str`, *optional*, defaults to `"gelu"`):
The activation function used by the multimodal projector.
vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`):
The feature selection strategy used to select the vision feature from the vision backbone.
Can be one of `"default"` or `"full"`.
vision_feature_layer (`int`, *optional*, defaults to -2):
The index of the layer to select the vision feature.
Example:
```python
>>> from transformers import MllamaForConditionalGeneration, MllamaConfig, CLIPVisionConfig, LlamaConfig
>>> # Initializing a CLIP-vision config
>>> vision_config = CLIPVisionConfig()
>>> # Initializing a Llama config
>>> text_config = LlamaConfig()
>>> # Initializing a Mllama mllama-1.5-7b style configuration
>>> configuration = MllamaConfig(vision_config, text_config)
>>> # Initializing a model from the mllama-1.5-7b style configuration
>>> model = MllamaForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""

model_type = "mllama"
is_composition = False

def __init__(
self,
vision_config=None,
global_vision_config=None,
text_config=None,
**kwargs,
):

if isinstance(vision_config, dict):
vision_config["model_type"] = (
vision_config["model_type"] if "model_type" in vision_config else "clip_vision_model"
)
vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config)
elif vision_config is None:
vision_config = CONFIG_MAPPING["clip_vision_model"](
intermediate_size=4096,
hidden_size=1024,
patch_size=14,
image_size=336,
num_hidden_layers=32,
num_attention_heads=16,
vocab_size=32000,
projection_dim=768,
)

self.vision_config = vision_config

if isinstance(text_config, dict):
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "llama"
text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
elif text_config is None:
text_config = CONFIG_MAPPING["llama"](

)

self.text_config = text_config
self._vocab_size = self.text_config.vocab_size

super().__init__(**kwargs)

@property
def vocab_size(self):
warnings.warn(
"The `vocab_size` attribute is deprecated and will be removed in v4.42, Please use `text_config.vocab_size` instead.",
FutureWarning,
)
return self._vocab_size

@vocab_size.setter
def vocab_size(self, value):
self._vocab_size = value

def to_dict(self):
output = super().to_dict()
output.pop("_vocab_size", None)
return output

0 comments on commit 55e8811

Please sign in to comment.