Skip to content

v0.2.0: Stable Diffusion early access, K-LMS sampling

Compare
Choose a tag to compare
@anton-l anton-l released this 16 Aug 15:52
· 4025 commits to main since this release

Stable Diffusion

Stable Diffusion is a text-to-image latent diffusion model created by the researchers and engineers from CompVis, Stability AI and LAION. It's trained on 512x512 images from a subset of the LAION-5B database. This model uses a frozen CLIP ViT-L/14 text encoder to condition the model on text prompts. With its 860M UNet and 123M text encoder, the model is relatively lightweight and runs on a GPU with at least 10GB VRAM.
See the model card for more information.

The Stable Diffusion weights are currently only available to universities, academics, research institutions and independent researchers. Please request access applying to this form

from torch import autocast
from diffusers import StableDiffusionPipeline

# make sure you're logged in with `huggingface-cli login`
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-3-diffusers", use_auth_token=True)  

prompt = "a photograph of an astronaut riding a horse"
with autocast("cuda"):
    image = pipe(prompt, guidance_scale=7)["sample"][0]  # image here is in PIL format
    
image.save(f"astronaut_rides_horse.png")

K-LMS sampling

The new LMSDiscreteScheduler is a port of k-lms from k-diffusion by Katherine Crowson.
The scheduler can be easily swapped into existing pipelines like so:

from diffusers import StableDiffusionPipeline, LMSDiscreteScheduler

model_id = "CompVis/stable-diffusion-v1-3-diffusers"
# Use the K-LMS scheduler here instead
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, use_auth_token=True)

Integration test with text-to-image script of Stable-Diffusion

#182 and #186 make sure that DDIM and PNDM/PLMS scheduler yield 1-to-1 the same results as stable diffusion.
Try it out yourself:

In Stable-Diffusion:

python scripts/txt2img.py --prompt "a photograph of an astronaut riding a horse" --n_samples 4 --n_iter 1 --fixed_code --plms

or

python scripts/txt2img.py --prompt "a photograph of an astronaut riding a horse" --n_samples 4 --n_iter 1 --fixed_code

In diffusers:

from diffusers import StableDiffusionPipeline, DDIMScheduler
from time import time
from PIL import Image
from einops import rearrange
import numpy as np
import torch
from torch import autocast
from torchvision.utils import make_grid

torch.manual_seed(42)

prompt = "a photograph of an astronaut riding a horse"
#prompt = "a photograph of the eiffel tower on the moon"
#prompt = "an oil painting of a futuristic forest gives"

# uncomment to use DDIM
# scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
# pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-3-diffusers", use_auth_token=True, scheduler=scheduler)  # make sure you're logged in with `huggingface-cli login`

pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-3-diffusers", use_auth_token=True)  # make sure you're logged in with `huggingface-cli login`

all_images = []
num_rows = 1
num_columns = 4
for _ in range(num_rows):
    with autocast("cuda"):
        images = pipe(num_columns * [prompt], guidance_scale=7.5, output_type="np")["sample"]  # image here is in [PIL format](https://pillow.readthedocs.io/en/stable/)
        all_images.append(torch.from_numpy(images))

# additionally, save as grid
grid = torch.stack(all_images, 0)
grid = rearrange(grid, 'n b h w c -> (n b) h w c')
grid = rearrange(grid, 'n h w c -> n c h w')
grid = make_grid(grid, nrow=num_rows)

# to image
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
image = Image.fromarray(grid.astype(np.uint8))

image.save(f"./images/diffusers/{'_'.join(prompt.split())}_{round(time())}.png")

Improvements and bugfixes

Full Changelog: 0.1.3...v0.2.0