Skip to content

gguf : enforce that tensor names are unique #6905

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Apr 28, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 12 additions & 0 deletions ggml.c
Original file line number Diff line number Diff line change
Expand Up @@ -20824,6 +20824,14 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p

gguf_tensor_info_sanitize(info);

// make sure there is no duplicated tensor names
for (uint64_t j = 0; j < i; ++j) {
if (strcmp(info->name.data, ctx->infos[j].name.data) == 0) {
fprintf(stderr, "%s: duplicated tensor name %s\n", __func__, info->name.data);
ok = false;
}
}

if (!ok) {
fprintf(stderr, "%s: failed to read tensor info\n", __func__);
fclose(file);
Expand Down Expand Up @@ -21360,6 +21368,10 @@ void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
void gguf_add_tensor(
struct gguf_context * ctx,
const struct ggml_tensor * tensor) {
if (gguf_find_tensor(ctx, tensor->name) != -1) {
GGML_ASSERT(false && "duplicated tensor name");
}

const int idx = ctx->header.n_tensors;
ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));

Expand Down
8 changes: 7 additions & 1 deletion gguf-py/gguf/gguf_reader.py
Original file line number Diff line number Diff line change
Expand Up @@ -234,8 +234,14 @@ def _build_tensors_fields(self, offs: int, count: int) -> tuple[int, list[Reader

def _build_tensors(self, start_offs: int, fields: list[ReaderField]) -> None:
tensors = []
tensor_names = set() # keep track of name to prevent duplicated tensors
for field in fields:
_name_len, name_data, _n_dims, dims, raw_dtype, offset_tensor = field.parts
# check if there's any tensor having same name already in the list
tensor_name = str(bytes(name_data), encoding = 'utf-8')
if tensor_name in tensor_names:
raise ValueError(f'Found duplicated tensor with name {tensor_name}')
tensor_names.add(tensor_name)
ggml_type = GGMLQuantizationType(raw_dtype[0])
n_elems = np.prod(dims)
block_size, type_size = GGML_QUANT_SIZES[ggml_type]
Expand Down Expand Up @@ -267,7 +273,7 @@ def _build_tensors(self, start_offs: int, fields: list[ReaderField]) -> None:
item_count = n_bytes
item_type = np.uint8
tensors.append(ReaderTensor(
name = str(bytes(name_data), encoding = 'utf-8'),
name = tensor_name,
tensor_type = ggml_type,
shape = dims,
n_elements = n_elems,
Expand Down
5 changes: 5 additions & 0 deletions gguf-py/gguf/gguf_writer.py
Original file line number Diff line number Diff line change
Expand Up @@ -63,6 +63,7 @@ def __init__(
self.kv_data_count = 0
self.ti_data = bytearray()
self.ti_data_count = 0
self.ti_names = set()
self.use_temp_file = use_temp_file
self.temp_file = None
self.tensors = []
Expand Down Expand Up @@ -197,6 +198,10 @@ def add_tensor_info(
if self.state is not WriterState.EMPTY:
raise ValueError(f'Expected output file to be empty, got {self.state}')

if name in self.ti_names:
raise ValueError(f'Duplicated tensor name {name}')
self.ti_names.add(name)

encoded_name = name.encode("utf8")
self.ti_data += self._pack("Q", len(encoded_name))
self.ti_data += encoded_name
Expand Down
8 changes: 8 additions & 0 deletions llama.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -3110,9 +3110,17 @@ struct llama_model_loader {

fver = (enum llama_fver) gguf_get_version(meta);

std::set<std::string> tensor_names;
for (auto & w : weights) {
n_elements += ggml_nelements(w.tensor);
n_bytes += ggml_nbytes(w.tensor);
// make sure there is no duplicated tensor names
const std::string name(w.tensor->name);
auto found = tensor_names.find(name);
if (found != tensor_names.end()) {
throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", w.tensor->name));
}
tensor_names.insert(name);
}

LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
Expand Down