Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

docs: Add docs for CostTrigger #600

Merged
merged 33 commits into from
Aug 30, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
33 commits
Select commit Hold shift + click to select a range
a11d6ea
Add config models for first cost aware triggers
robinholzi Aug 20, 2024
dd09c0d
Add window_size
robinholzi Aug 20, 2024
008b44a
Add cost tracker
robinholzi Aug 20, 2024
f79c8de
Fix naming
robinholzi Aug 20, 2024
21dbf6b
Add first docs version
robinholzi Aug 20, 2024
6e7ad46
Merge branch 'main' into robin/feat/cost-aware-config-models
robinholzi Aug 20, 2024
dc1410a
Merge branch 'robin/feat/cost-aware-config-models' into robin/feat/co…
robinholzi Aug 20, 2024
c7c50b2
Merge branch 'robin/feat/cost-aware-trackers' into robin/feat/cost-aw…
robinholzi Aug 20, 2024
f038291
Fix tests
robinholzi Aug 20, 2024
d726ca4
feat: Add `DynamicRollingAverageThresholdPolicy` (#593)
robinholzi Aug 21, 2024
a438f38
feat: Add `PerformanceTrigger` (#591)
robinholzi Aug 21, 2024
884dddb
Adjustments
robinholzi Aug 21, 2024
c353235
Merge branch 'main' into robin/feat/cost-aware-config-models
robinholzi Aug 22, 2024
26a6d83
Integrate suggestions
robinholzi Aug 26, 2024
5dbf53f
Extend docs
robinholzi Aug 26, 2024
41f238e
Merge branch 'robin/feat/cost-aware-config-models' into robin/feat/co…
robinholzi Aug 26, 2024
33f7ce6
Merge branch 'main' into robin/feat/cost-aware-trackers
robinholzi Aug 26, 2024
ca976c4
Merge branch 'robin/feat/cost-aware-trackers' into robin/feat/cost-aw…
robinholzi Aug 26, 2024
2c1f93c
Add AvoidableMisclassificationCostTrigger
robinholzi Aug 28, 2024
fcad410
Fix superconstructor call MultiInheritance
robinholzi Aug 28, 2024
7dbf636
retrigger ci
robinholzi Aug 28, 2024
05c7f5e
Merge branch 'main' into robin/feat/cost-aware-docs
robinholzi Aug 28, 2024
aa4ece8
Merge branch 'robin/feat/cost-trigger-avoidable-misclassifications' i…
robinholzi Aug 28, 2024
8f0c430
Update all docs
robinholzi Aug 28, 2024
2a90827
Add tests for PerformanceTriggerMixin
robinholzi Aug 29, 2024
211f71f
Add tests for AvoidableMisclassificationCostTrigger
robinholzi Aug 29, 2024
f9a9f78
Suggested changes
robinholzi Aug 29, 2024
14b0259
Merge branch 'robin/feat/cost-trigger-avoidable-misclassifications' i…
robinholzi Aug 29, 2024
bbea684
Incorporate suggestions
robinholzi Aug 29, 2024
d139991
Fix reference
robinholzi Aug 29, 2024
cfdf15f
Pragma no cover
robinholzi Aug 30, 2024
0624c33
Merge branch 'robin/feat/cost-trigger-avoidable-misclassifications' i…
robinholzi Aug 30, 2024
0e04f5e
Merge branch 'main' into robin/feat/cost-aware-docs
robinholzi Aug 30, 2024
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
60 changes: 0 additions & 60 deletions docs/pipeline/TRIGGERING.md

This file was deleted.

183 changes: 183 additions & 0 deletions docs/pipeline/triggers/COST_TRIGGER.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,183 @@
# Cost-Based Triggering

## Overview

Cost-based triggers evaluate the trade-off between the cost of triggering (e.g., training time) and the benefits gained from triggering (e.g., reducing regret metrics like data incorporation latency or avoidable misclassification latency).

As regret, we define metrics that quantify the negative impact of not addressing a problem in a timely manner. They
therefore help in decision making processes like scheduling or retraining decisions.
In the context of `modyn` triggering, we can view regret based metrics as the cost of not triggering.

The `CostTrigger` class serves as the base class for specific implementations, such as `DataIncorporationLatencyCostTrigger` and `AvoidableMisclassificationCostTrigger`, which utilize different regret metrics.

While no trigger occurs regret units are cumulated into to a regret over time curve.
Rather than using this regret units directly, we build an area-under-the-curve metric.
The area under the regret curve measures the time regret units have spent being unaddressed.

As this policy operates the two metrics `time` (cost) and a regret metric we need
a way to express the tradeoff between the two. A user e.g. has to specify how many seconds of training time he is
willing to eradicate a certain amount of cumulative regret.

### Main Architecture

```mermaid
classDiagram
class Trigger {
<<abstract>>
+void init_trigger(trigger_context)
+Generator[Triggers] inform(new_data)*
+void inform_new_model(model_id, ...)
}

class BatchedTrigger {
<<abstract>>
+void inform(...)
-bool evaluate_batch(batch, trigger_index)*
}

class PerformanceTriggerMixin {
+DataDensityTracker data_density
+PerformanceTracker performance_tracker
+StatefulModel model

-EvaluationResults run_evaluation(interval_data)
}

class CostTrigger {
<<abstract>>
+CostTracker cost_tracker
+IncorporationLatencyTracker latency_tracker

+void init_trigger(trigger_context)
+void inform_new_model(model_id, ...)

-bool evaluate_batch(batch, trigger_index)
-float compute_regret_metric()*

}

class CostTracker {
}

class IncorporationLatencyTracker {
}

class DataIncorporationLatencyCostTrigger {
-float compute_regret_metric()
}

class AvoidableMisclassificationCostTrigger {
NumberAvoidableMisclassificationEstimator misclassification_estimator

+void init_trigger(trigger_context)
+void inform_new_model(model_id, ...)

-float compute_regret_metric()
}


Trigger <|-- BatchedTrigger
BatchedTrigger <|-- CostTrigger
PerformanceTriggerMixin <|-- CostTrigger

CostTrigger *-- "1" CostTracker
CostTrigger *-- "1" IncorporationLatencyTracker
CostTrigger <|-- DataIncorporationLatencyCostTrigger
CostTrigger <|-- AvoidableMisclassificationCostTrigger

DataIncorporationLatencyCostTrigger *-- "1" DataIncorporationLatencyCostTriggerConfig
AvoidableMisclassificationCostTrigger *-- "1" AvoidableMisclassificationCostTriggerConfig

style PerformanceTriggerMixin fill:#DDDDDD,stroke:#A9A9A9,stroke-width:2px

style DataIncorporationLatencyCostTrigger fill:#C5DEB8,stroke:#A9A9A9,stroke-width:2px
style AvoidableMisclassificationCostTrigger fill:#C5DEB8,stroke:#A9A9A9,stroke-width:2px
```

### `CostTrigger` Hierarchy

Both `DataIncorporationLatencyCostTrigger` and `AvoidableMisclassificationCostTrigger` track the cost of triggering and convert a regret metric (e.g., data incorporation latency or avoidable misclassification latency) into the training time unit with a user-defined conversion factor.
MaxiBoether marked this conversation as resolved.
Show resolved Hide resolved

<details>
<summary><b>Incorporation Latency</b></summary>

Incorporation latency measures the delay in integrating / addressing new data or drift problems. They are typically set up as a area-under-the-curve metric, where the area is the time taken to incorporate the data. The underlying curve function is the number of samples or regret units over time that need to be addressed.

</details>

#### `DataIncorporationLatencyCostTrigger`

- Uses data incorporation latency as the regret metric
- Measures the delay in integrating new data
- Triggers when the accumulated integration delay converted to time units (user defined conversion factor) exceed the expected training time

#### `AvoidableMisclassificationCostTrigger`

- Extends performance-aware triggers with a cost-awareness aspect
- Uses avoidable misclassification latency as the regret metric
- Triggers when the accumulated misclassification latency (in training time units) exceeds the expected training time.

### `CostTracker`

- **Purpose**: Tracks and forecasts the cost of triggers (e.g., wall clock time) based on past trigger data.
- **Functionality**:
- Records the number of samples processed and the time taken for each trigger.
- Uses a linear regression model to forecast future training times based on the number of samples.
- Requires calibration after each trigger to refine its predictions.

```mermaid
classDiagram
class CostTracker {
+deque measurements
+Ridge linear_model
+void inform_trigger(int number_samples, float elapsed_time)
+bool needs_calibration()
+float forecast_training_time(int number_samples)
}
```

### `IncorporationLatencyTracker`

- **Purpose**: Tracks latency-based regret metrics like data-incorporation-latency.
- **Functionality**:
- Stores how many units of regret have been seen so far, and their latency.
- The regret latency measures the number of seconds regret units have spent being unaddressed by a trigger.
- When modeling a regret over time curve, the current regret is value of the curve at the current time.
- The cumulative latency regret is the area under the curve up to the current time.

```mermaid
classDiagram
class IncorporationLatencyTracker {
+float current_regret
+float cumulative_latency_regret

+float add_latency(float regret, float batch_duration)
+float add_latencies(list[tuple[int, float]] regrets, int start_timestamp, float batch_duration)
+void inform_trigger()
}
```

### `CostTriggerConfig`

```mermaid
classDiagram
class CostTriggerConfig {
+int cost_tracking_window_size
}

class DataIncorporationLatencyCostTriggerConfig {
+float incorporation_delay_per_training_second
}

class PerformanceTriggerConfig {
}

class AvoidableMisclassificationCostTriggerConfig {
+float avoidable_misclassification_latency_per_training_second
}

CostTriggerConfig <|-- DataIncorporationLatencyCostTriggerConfig
CostTriggerConfig <|-- AvoidableMisclassificationCostTriggerConfig
PerformanceTriggerConfig <|-- AvoidableMisclassificationCostTriggerConfig

```
Original file line number Diff line number Diff line change
Expand Up @@ -10,53 +10,53 @@ It utilizes `DetectionWindows` to select samples for drift detection and `DriftD

```mermaid
classDiagram
class DetectionWindows {
class Trigger {
<<abstract>>
+void init_trigger(trigger_context)
+Generator[Triggers] inform(new_data)*
+void inform_new_model(model_id, ...)
}

class DriftDetector

class Trigger {
class BatchedTrigger {
<<abstract>>
+void init_trigger(TriggerContext context)
+Generator[Triggers] inform(new_data)
+void inform_new_model(int most_recent_model_id)
+void inform(...)
-bool evaluate_batch(batch, trigger_index)*
}

class TimeTrigger {
}
class DataDriftTrigger {
+DataDriftTriggerConfig config
+DetectionWindows windows
+dict[MetricId, DriftDetector] distance_detectors
+dict[MetricId, DriftDecisionPolicy] decision_policies

class DataAmountTrigger {
+void init_trigger(trigger_context)
-bool evaluate_batch(batch, trigger_index)
+void inform_new_model(model_id, ...)
}

class DriftDetector {
class DetectionWindows {
<<abstract>>
}

class DataDriftTrigger {
+DataDriftTriggerConfig config
+DetectionWindows _windows
+dict[MetricId, DriftDecisionPolicy] decision_policies
+dict[MetricId, DriftDetector] distance_detectors

+void init_trigger(TriggerContext context)
+Generator[triggers] inform(new_data)
+void inform_new_model(int most_recent_model_id)
class DriftDetector {
<<abstract>>
}

class DriftDecisionPolicy {
<<abstract>>
}

Trigger <|-- BatchedTrigger
BatchedTrigger <|-- DataDriftTrigger

DataDriftTrigger "warmup_trigger" *-- "1" Trigger
DataDriftTrigger *-- "1" DataDriftTriggerConfig
DataDriftTrigger *-- "1" DetectionWindows
DataDriftTrigger *-- "|metrics|" DriftDetector
DataDriftTrigger *-- "|metrics|" DriftDecisionPolicy

Trigger <|-- DataDriftTrigger
Trigger <|-- TimeTrigger
Trigger <|-- DataAmountTrigger
style PerformanceTriggerMixin fill:#DDDDDD,stroke:#A9A9A9,stroke-width:2px
style DataDriftTrigger fill:#C5DEB8,stroke:#A9A9A9,stroke-width:2px
```

### `DetectionWindows` Hierarchy
Expand Down
Loading
Loading