Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 5 additions & 4 deletions src/Microsoft.ML.Data/Transforms/ColumnCopying.cs
Original file line number Diff line number Diff line change
Expand Up @@ -197,7 +197,7 @@ private sealed class Mapper : OneToOneMapperBase, ISaveAsOnnx
private readonly DataViewSchema _schema;
private readonly (string outputColumnName, string inputColumnName)[] _columns;

public bool CanSaveOnnx(OnnxContext ctx) => ctx.GetOnnxVersion() == OnnxVersion.Experimental;
public bool CanSaveOnnx(OnnxContext ctx) => true;

internal Mapper(ColumnCopyingTransformer parent, DataViewSchema inputSchema, (string outputColumnName, string inputColumnName)[] columns)
: base(parent.Host.Register(nameof(Mapper)), parent, inputSchema)
Expand Down Expand Up @@ -233,15 +233,16 @@ protected override DataViewSchema.DetachedColumn[] GetOutputColumnsCore()

public void SaveAsOnnx(OnnxContext ctx)
{
var opType = "CSharp";
var opType = "Identity";

foreach (var column in _columns)
{
var srcVariableName = ctx.GetVariableName(column.inputColumnName);
if (!ctx.ContainsColumn(srcVariableName))
continue;
_schema.TryGetColumnIndex(column.inputColumnName, out int colIndex);
var dstVariableName = ctx.AddIntermediateVariable(_schema[colIndex].Type, column.outputColumnName);
var node = ctx.CreateNode(opType, srcVariableName, dstVariableName, ctx.GetNodeName(opType));
node.AddAttribute("type", LoaderSignature);
var node = ctx.CreateNode(opType, srcVariableName, dstVariableName, ctx.GetNodeName(opType), "");
}
}
}
Expand Down
33 changes: 33 additions & 0 deletions test/Microsoft.ML.Tests/OnnxConversionTest.cs
Original file line number Diff line number Diff line change
Expand Up @@ -1187,6 +1187,39 @@ void MulticlassTrainersOnnxConversionTest()
Done();
}

[Fact]
void CopyColumnsOnnxTest()
{
var mlContext = new MLContext(seed: 1);

var trainDataPath = GetDataPath(TestDatasets.generatedRegressionDataset.trainFilename);
var dataView = mlContext.Data.LoadFromTextFile<AdultData>(trainDataPath,
separatorChar: ';',
hasHeader: true);

var pipeline = mlContext.Transforms.CopyColumns("Target1", "Target");
var model = pipeline.Fit(dataView);
var transformedData = model.Transform(dataView);
var onnxModel = mlContext.Model.ConvertToOnnxProtobuf(model, dataView);

var onnxFileName = "copycolumns.onnx";
var onnxModelPath = GetOutputPath(onnxFileName);

SaveOnnxModel(onnxModel, onnxModelPath, null);

if (IsOnnxRuntimeSupported())
{
// Evaluate the saved ONNX model using the data used to train the ML.NET pipeline.
string[] inputNames = onnxModel.Graph.Input.Select(valueInfoProto => valueInfoProto.Name).ToArray();
string[] outputNames = onnxModel.Graph.Output.Select(valueInfoProto => valueInfoProto.Name).ToArray();
var onnxEstimator = mlContext.Transforms.ApplyOnnxModel(outputNames, inputNames, onnxModelPath);
var onnxTransformer = onnxEstimator.Fit(dataView);
var onnxResult = onnxTransformer.Transform(dataView);
CompareSelectedR4ScalarColumns(model.ColumnPairs[0].outputColumnName, outputNames[2], transformedData, onnxResult);
}
Done();
}

private void CreateDummyExamplesToMakeComplierHappy()
{
var dummyExample = new BreastCancerFeatureVector() { Features = null };
Expand Down