- DeepPhys : DeepPhys: Video-Based Physiological Measurement Using Convolutional Attention Networks
- MTTS :Multi-Task Temporal Shift Attention Networks for
On-Device Contactless Vitals Measurement
- need to verification
- DeepPhys + LSTM
- 3D physNet : Remote Photoplethysmograph Signal Measurement from Facial Videos Using Spatio-Temporal Networks
-
dataset : related to dataset
- dataset_loader.py : pytorch.utils.dataset stored dataset file load(.hpy)
- __NetworkName__Dataset.py : Customized dataset to fit each model.
-
nets : related to Network Architecture
( funcs < layers < blocks < modules <= sub_models <= models)- blocks
- funcs
- layers
- models
- sub_models
- modules
-
log.py : custom log functions
-
loss.py : available loss list & custom loss functions
-
optim.py : available optimizer list & custom optimizer functions
-
main.py
-
params.json : List of options for training
-
__TIME__ : check features running time
- preprocessing time
- model init time
- setting loss func time
- setting optimizer time
- training time per 1epoch
- inference time per 1 batch
-
__PREPROCESSING__ : perform preprocessing before training & generate preprocessed file(.hpy)
-
__MODEL_SUMMARY__ : print model architecture summary using torchsummary
- modify params.json
example
"model_params":
{
"name": "DeepPhys",
"name_comment":
[
"DeepPhys",
"PhysNet"
]
}
- run main.py
TVSTORM inc.
Kim Dae Yeol Kim Jin Soo
wagon0004@tvstorm.com wlstn25092303@tvstorm.com
This work was supported by the ICT R&D program of MSIP/IITP. [2021(2021-0-00900), Adaptive Federated Learning in Dynamic Heterogeneous Environment]
##reference