Skip to content

Latest commit

 

History

History
75 lines (58 loc) · 2.53 KB

README.md

File metadata and controls

75 lines (58 loc) · 2.53 KB

Implement Deep Learning based Rppg Model using pytorch

model list

file list

  • dataset  :  related to dataset

    • dataset_loader.py  :  pytorch.utils.dataset stored dataset file load(.hpy)
    • __NetworkName__Dataset.py  :  Customized dataset to fit each model.
  • nets  :  related to Network Architecture
    ( funcs < layers < blocks < modules <= sub_models <= models)

    • blocks
    • funcs
    • layers
    • models
      • sub_models
    • modules
  • log.py  :  custom log functions

  • loss.py  :  available loss list & custom loss functions

  • optim.py  :  available optimizer list & custom optimizer functions

  • main.py

  • params.json  : List of options for training

preprocessor list

  • __TIME__  :  check features running time

    • preprocessing time
    • model init time
    • setting loss func time
    • setting optimizer time
    • training time per 1epoch
    • inference time per 1 batch
  • __PREPROCESSING__  :  perform preprocessing before training & generate preprocessed file(.hpy)

  • __MODEL_SUMMARY__  :  print model architecture summary using torchsummary

Usages

  1. modify params.json
example
  "model_params":
    {
        "name": "DeepPhys",
        "name_comment":
                [
                    "DeepPhys",
                    "PhysNet"
                ]
    }
  1. run main.py

Contacts

TVSTORM inc.
Kim Dae Yeol                               Kim Jin Soo
wagon0004@tvstorm.com          wlstn25092303@tvstorm.com

Funding

This work was supported by the ICT R&D program of MSIP/IITP. [2021(2021-0-00900), Adaptive Federated Learning in Dynamic Heterogeneous Environment]

##reference

  1. ZitongYu/PhysNet