Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Improve sparseJacobianEigen() #682

Merged
merged 16 commits into from
Jan 28, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
80 changes: 45 additions & 35 deletions gtsam/linear/GaussianFactorGraph.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -100,33 +100,35 @@ namespace gtsam {
}

/* ************************************************************************* */
vector<boost::tuple<size_t, size_t, double> > GaussianFactorGraph::sparseJacobian() const {
using SparseTriplets = std::vector<std::tuple<int, int, double> >;
SparseTriplets GaussianFactorGraph::sparseJacobian(const Ordering& ordering,
size_t& nrows,
size_t& ncols) const {
gttic_(GaussianFactorGraph_sparseJacobian);
// First find dimensions of each variable
typedef std::map<Key, size_t> KeySizeMap;
KeySizeMap dims;
for (const sharedFactor& factor : *this) {
if (!static_cast<bool>(factor))
continue;
for (const auto& factor : *this) {
if (!static_cast<bool>(factor)) continue;

for (GaussianFactor::const_iterator key = factor->begin();
key != factor->end(); ++key) {
dims[*key] = factor->getDim(key);
for (auto it = factor->begin(); it != factor->end(); ++it) {
dims[*it] = factor->getDim(it);
}
}

// Compute first scalar column of each variable
size_t currentColIndex = 0;
ncols = 0;
KeySizeMap columnIndices = dims;
for (const KeySizeMap::value_type& col : dims) {
columnIndices[col.first] = currentColIndex;
currentColIndex += dims[col.first];
for (const auto key : ordering) {
columnIndices[key] = ncols;
ncols += dims[key];
}

// Iterate over all factors, adding sparse scalar entries
typedef boost::tuple<size_t, size_t, double> triplet;
vector<triplet> entries;
size_t row = 0;
for (const sharedFactor& factor : *this) {
SparseTriplets entries;
entries.reserve(30 * size());
nrows = 0;
for (const auto& factor : *this) {
if (!static_cast<bool>(factor)) continue;

// Convert to JacobianFactor if necessary
Expand All @@ -138,52 +140,60 @@ namespace gtsam {
if (hessian)
jacobianFactor.reset(new JacobianFactor(*hessian));
else
throw invalid_argument(
"GaussianFactorGraph contains a factor that is neither a JacobianFactor nor a HessianFactor.");
throw std::invalid_argument(
"GaussianFactorGraph contains a factor that is neither a "
"JacobianFactor nor a HessianFactor.");
}

// Whiten the factor and add entries for it
// iterate over all variables in the factor
const JacobianFactor whitened(jacobianFactor->whiten());
for (JacobianFactor::const_iterator key = whitened.begin();
key < whitened.end(); ++key) {
for (auto key = whitened.begin(); key < whitened.end(); ++key) {
JacobianFactor::constABlock whitenedA = whitened.getA(key);
// find first column index for this key
size_t column_start = columnIndices[*key];
for (size_t i = 0; i < (size_t) whitenedA.rows(); i++)
for (size_t j = 0; j < (size_t) whitenedA.cols(); j++) {
for (size_t i = 0; i < (size_t)whitenedA.rows(); i++)
for (size_t j = 0; j < (size_t)whitenedA.cols(); j++) {
double s = whitenedA(i, j);
if (std::abs(s) > 1e-12)
entries.push_back(boost::make_tuple(row + i, column_start + j, s));
entries.emplace_back(nrows + i, column_start + j, s);
}
}

JacobianFactor::constBVector whitenedb(whitened.getb());
size_t bcolumn = currentColIndex;
for (size_t i = 0; i < (size_t) whitenedb.size(); i++)
entries.push_back(boost::make_tuple(row + i, bcolumn, whitenedb(i)));
for (size_t i = 0; i < (size_t)whitenedb.size(); i++) {
double s = whitenedb(i);
if (std::abs(s) > 1e-12) entries.emplace_back(nrows + i, ncols, s);
}

// Increment row index
row += jacobianFactor->rows();
nrows += jacobianFactor->rows();
}
return vector<triplet>(entries.begin(), entries.end());

ncols++; // +1 for b-column
return entries;
}

/* ************************************************************************* */
Matrix GaussianFactorGraph::sparseJacobian_() const {
SparseTriplets GaussianFactorGraph::sparseJacobian() const {
size_t nrows, ncols;
return sparseJacobian(Ordering(this->keys()), nrows, ncols);
}

/* ************************************************************************* */
Matrix GaussianFactorGraph::sparseJacobian_() const {
gttic_(GaussianFactorGraph_sparseJacobian_matrix);
// call sparseJacobian
typedef boost::tuple<size_t, size_t, double> triplet;
vector<triplet> result = sparseJacobian();
auto result = sparseJacobian();

// translate to base 1 matrix
size_t nzmax = result.size();
Matrix IJS(3,nzmax);
Matrix IJS(3, nzmax);
for (size_t k = 0; k < result.size(); k++) {
const triplet& entry = result[k];
IJS(0,k) = double(entry.get<0>() + 1);
IJS(1,k) = double(entry.get<1>() + 1);
IJS(2,k) = entry.get<2>();
const auto& entry = result[k];
IJS(0, k) = double(std::get<0>(entry) + 1);
IJS(1, k) = double(std::get<1>(entry) + 1);
IJS(2, k) = std::get<2>(entry);
}
return IJS;
}
Expand Down
20 changes: 15 additions & 5 deletions gtsam/linear/GaussianFactorGraph.h
Original file line number Diff line number Diff line change
Expand Up @@ -181,15 +181,25 @@ namespace gtsam {
///@{

/**
* Return vector of i, j, and s to generate an m-by-n sparse Jacobian matrix,
* where i(k) and j(k) are the base 0 row and column indices, s(k) a double.
* Returns a sparse augmented Jacbian matrix as a vector of i, j, and s,
* where i(k) and j(k) are the base 0 row and column indices, and s(k) is
* the entry as a double.
* The standard deviations are baked into A and b
* @return the sparse matrix as a std::vector of std::tuples
* @param ordering the column ordering
* @param[out] nrows The number of rows in the augmented Jacobian
* @param[out] ncols The number of columns in the augmented Jacobian
*/
std::vector<boost::tuple<size_t, size_t, double> > sparseJacobian() const;
std::vector<std::tuple<int, int, double> > sparseJacobian(
const Ordering& ordering, size_t& nrows, size_t& ncols) const;

/** Returns a sparse augmented Jacobian matrix with default ordering */
std::vector<std::tuple<int, int, double> > sparseJacobian() const;

/**
* Matrix version of sparseJacobian: generates a 3*m matrix with [i,j,s] entries
* such that S(i(k),j(k)) = s(k), which can be given to MATLAB's sparse.
* Matrix version of sparseJacobian: generates a 3*m matrix with [i,j,s]
* entries such that S(i(k),j(k)) = s(k), which can be given to MATLAB's
* sparse. Note: i, j are 1-indexed.
* The standard deviations are baked into A and b
*/
Matrix sparseJacobian_() const;
Expand Down
94 changes: 19 additions & 75 deletions gtsam/linear/SparseEigen.h
Original file line number Diff line number Diff line change
Expand Up @@ -30,89 +30,33 @@

namespace gtsam {

typedef Eigen::SparseMatrix<double> SparseEigen;
/// Eigen-format sparse matrix. Note: ColMajor is ~20% faster since
/// InnerIndices must be sorted
typedef Eigen::SparseMatrix<double, Eigen::ColMajor, int> SparseEigen;

/// Constructs an Eigen-format SparseMatrix of a GaussianFactorGraph
SparseEigen sparseJacobianEigen(
const GaussianFactorGraph &gfg, const Ordering &ordering) {
// TODO(gerry): eliminate copy/pasta by making GaussianFactorGraph version
// more general, or by creating an Eigen::Triplet compatible wrapper for
// boost::tuple return type

// First find dimensions of each variable
std::map<Key, size_t> dims;
for (const boost::shared_ptr<GaussianFactor> &factor : gfg) {
if (!static_cast<bool>(factor)) continue;

for (auto it = factor->begin(); it != factor->end(); ++it) {
dims[*it] = factor->getDim(it);
}
}

// Compute first scalar column of each variable
size_t currentColIndex = 0;
std::map<Key, size_t> columnIndices;
for (const auto key : ordering) {
columnIndices[key] = currentColIndex;
currentColIndex += dims[key];
}

// Iterate over all factors, adding sparse scalar entries
std::vector<Eigen::Triplet<double>> entries;
entries.reserve(60 * gfg.size());

size_t row = 0;
for (const boost::shared_ptr<GaussianFactor> &factor : gfg) {
if (!static_cast<bool>(factor)) continue;

// Convert to JacobianFactor if necessary
JacobianFactor::shared_ptr jacobianFactor(
boost::dynamic_pointer_cast<JacobianFactor>(factor));
if (!jacobianFactor) {
HessianFactor::shared_ptr hessian(
boost::dynamic_pointer_cast<HessianFactor>(factor));
if (hessian)
jacobianFactor.reset(new JacobianFactor(*hessian));
else
throw std::invalid_argument(
"GaussianFactorGraph contains a factor that is neither a "
"JacobianFactor nor a HessianFactor.");
}

// Whiten the factor and add entries for it
// iterate over all variables in the factor
const JacobianFactor whitened(jacobianFactor->whiten());
for (JacobianFactor::const_iterator key = whitened.begin();
key < whitened.end(); ++key) {
JacobianFactor::constABlock whitenedA = whitened.getA(key);
// find first column index for this key
size_t column_start = columnIndices[*key];
for (size_t i = 0; i < (size_t)whitenedA.rows(); i++)
for (size_t j = 0; j < (size_t)whitenedA.cols(); j++) {
double s = whitenedA(i, j);
if (std::abs(s) > 1e-12)
entries.emplace_back(row + i, column_start + j, s);
}
}

JacobianFactor::constBVector whitenedb(whitened.getb());
size_t bcolumn = currentColIndex;
for (size_t i = 0; i < (size_t)whitenedb.size(); i++) {
double s = whitenedb(i);
if (std::abs(s) > 1e-12) entries.emplace_back(row + i, bcolumn, s);
}

// Increment row index
row += jacobianFactor->rows();
}

// ...and make a sparse matrix with it.
SparseEigen Ab(row, currentColIndex + 1);
Ab.setFromTriplets(entries.begin(), entries.end());
gttic_(SparseEigen_sparseJacobianEigen);
gchenfc marked this conversation as resolved.
Show resolved Hide resolved
// intermediate `entries` vector is kind of unavoidable due to how expensive
// factor->rows() is, which prevents us from populating SparseEigen directly.
size_t nrows, ncols;
auto entries = gfg.sparseJacobian(ordering, nrows, ncols);
// declare sparse matrix
SparseEigen Ab(nrows, ncols);
// See Eigen::set_from_triplets. This is about 5% faster.
// pass 1: count the nnz per inner-vector
std::vector<int> nnz(ncols, 0);
for (const auto &entry : entries) nnz[std::get<1>(entry)]++;
Ab.reserve(nnz);
// pass 2: insert the elements
for (const auto &entry : entries)
Ab.insert(std::get<0>(entry), std::get<1>(entry)) = std::get<2>(entry);
return Ab;
}

SparseEigen sparseJacobianEigen(const GaussianFactorGraph &gfg) {
gttic_(SparseEigen_sparseJacobianEigen_defaultOrdering);
return sparseJacobianEigen(gfg, Ordering(gfg.keys()));
}

Expand Down
25 changes: 13 additions & 12 deletions gtsam/linear/tests/testGaussianFactorGraph.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -36,16 +36,16 @@ using namespace boost::assign;
using namespace std;
using namespace gtsam;

typedef boost::tuple<size_t, size_t, double> BoostTriplet;
bool triplet_equal(BoostTriplet a, BoostTriplet b) {
if (a.get<0>() == b.get<0>() && a.get<1>() == b.get<1>() &&
a.get<2>() == b.get<2>()) return true;
typedef std::tuple<size_t, size_t, double> SparseTriplet;
bool triplet_equal(SparseTriplet a, SparseTriplet b) {
if (get<0>(a) == get<0>(b) && get<1>(a) == get<1>(b) &&
get<2>(a) == get<2>(b)) return true;

cout << "not equal:" << endl;
cout << "\texpected: "
"(" << a.get<0>() << ", " << a.get<1>() << ") = " << a.get<2>() << endl;
"(" << get<0>(a) << ", " << get<1>(a) << ") = " << get<2>(a) << endl;
cout << "\tactual: "
"(" << b.get<0>() << ", " << b.get<1>() << ") = " << b.get<2>() << endl;
"(" << get<0>(b) << ", " << get<1>(b) << ") = " << get<2>(b) << endl;
return false;
}

Expand All @@ -66,10 +66,11 @@ TEST(GaussianFactorGraph, initialization) {
// Test sparse, which takes a vector and returns a matrix, used in MATLAB
// Note that this the augmented vector and the RHS is in column 7
Matrix expectedIJS =
(Matrix(3, 22) << 1., 2., 1., 2., 3., 4., 3., 4., 3., 4., 5., 6., 5., 6., 5., 6., 7., 8., 7.,
8., 7., 8., 1., 2., 7., 7., 1., 2., 3., 4., 7., 7., 1., 2., 5., 6., 7., 7., 3., 4., 5., 6.,
7., 7., 10., 10., -1., -1., -10., -10., 10., 10., 2., -1., -5., -5., 5., 5., 0., 1., -5.,
-5., 5., 5., -1., 1.5).finished();
(Matrix(3, 21) <<
1., 2., 1., 2., 3., 4., 3., 4., 3., 4., 5., 6., 5., 6., 6., 7., 8., 7., 8., 7., 8.,
1., 2., 7., 7., 1., 2., 3., 4., 7., 7., 1., 2., 5., 6., 7., 3., 4., 5., 6., 7., 7.,
10., 10., -1., -1., -10., -10., 10., 10., 2., -1., -5., -5., 5., 5.,
1., -5., -5., 5., 5., -1., 1.5).finished();
Matrix actualIJS = fg.sparseJacobian_();
EQUALITY(expectedIJS, actualIJS);
}
Expand Down Expand Up @@ -118,14 +119,14 @@ TEST(GaussianFactorGraph, sparseJacobian) {

EXPECT(assert_equal(expectedMatlab, actual));

// BoostTriplets
// SparseTriplets
auto boostActual = gfg.sparseJacobian();
// check the triplets size...
EXPECT_LONGS_EQUAL(16, boostActual.size());
// check content
for (int i = 0; i < 16; i++) {
EXPECT(triplet_equal(
BoostTriplet(expected(i, 0) - 1, expected(i, 1) - 1, expected(i, 2)),
SparseTriplet(expected(i, 0) - 1, expected(i, 1) - 1, expected(i, 2)),
boostActual.at(i)));
}
}
Expand Down