Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix GaussianBayesTree logDeterminant bug #1327

Merged
merged 3 commits into from
Nov 15, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
56 changes: 39 additions & 17 deletions gtsam/linear/GaussianBayesTree.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -31,18 +31,37 @@ namespace gtsam {
template class BayesTreeCliqueBase<GaussianBayesTreeClique, GaussianFactorGraph>;
template class BayesTree<GaussianBayesTreeClique>;

/* ************************************************************************* */
namespace internal
{
/* ************************************************************************* */
double logDeterminant(const GaussianBayesTreeClique::shared_ptr& clique,
double& parentSum) {
parentSum += clique->conditional()
->R()
.diagonal()
.unaryExpr([](double x) { return log(x); })
.sum();
return 0;
/* ************************************************************************ */
namespace internal {

/**
* @brief Struct to help with traversing the Bayes Tree
* for log-determinant computation.
* Records the data which is passed to the child nodes in pre-order visit.
*/
struct LogDeterminantData {
// Use pointer so we can get the full result after tree traversal
double* logDet;
LogDeterminantData(double* logDet)
: logDet(logDet) {}
};
/* ************************************************************************ */
LogDeterminantData& logDeterminant(
const GaussianBayesTreeClique::shared_ptr& clique,
LogDeterminantData& parentSum) {
auto cg = clique->conditional();
double logDet;
if (cg->get_model()) {
Vector diag = cg->R().diagonal();
cg->get_model()->whitenInPlace(diag);
logDet = diag.unaryExpr([](double x) { return log(x); }).sum();
} else {
logDet =
cg->R().diagonal().unaryExpr([](double x) { return log(x); }).sum();
}
// Add the current clique's log-determinant to the overall sum
(*parentSum.logDet) += logDet;
return parentSum;
}
} // namespace internal

Expand Down Expand Up @@ -87,7 +106,14 @@ namespace gtsam {
return 0.0;
} else {
double sum = 0.0;
treeTraversal::DepthFirstForest(*this, sum, internal::logDeterminant);
// Store the log-determinant in this struct.
internal::LogDeterminantData rootData(&sum);
// No need to do anything for post-operation.
treeTraversal::no_op visitorPost;
// Limits OpenMP threads if we're mixing TBB and OpenMP
TbbOpenMPMixedScope threadLimiter;
// Traverse the GaussianBayesTree depth first and call logDeterminant on each node.
treeTraversal::DepthFirstForestParallel(*this, rootData, internal::logDeterminant, visitorPost);
return sum;
}
}
Expand All @@ -106,7 +132,3 @@ namespace gtsam {


} // \namespace gtsam




43 changes: 36 additions & 7 deletions gtsam/linear/tests/testGaussianBayesTree.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -15,18 +15,18 @@
* @author Kai Ni
*/

#include <iostream>
#include <CppUnitLite/TestHarness.h>

#include <boost/assign/list_of.hpp>
#include <boost/assign/std/list.hpp> // for operator +=
#include <boost/assign/std/set.hpp> // for operator +=

#include <gtsam/base/debug.h>
#include <gtsam/base/numericalDerivative.h>
#include <gtsam/linear/GaussianJunctionTree.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/linear/GaussianBayesTree.h>
#include <gtsam/linear/GaussianConditional.h>
#include <gtsam/linear/GaussianJunctionTree.h>

#include <boost/assign/list_of.hpp>
#include <boost/assign/std/list.hpp> // for operator +=
#include <boost/assign/std/set.hpp> // for operator +=
#include <iostream>

using namespace boost::assign;
using namespace std::placeholders;
Expand Down Expand Up @@ -321,6 +321,35 @@ TEST(GaussianBayesTree, determinant_and_smallestEigenvalue) {
EXPECT_DOUBLES_EQUAL(expectedDeterminant,actualDeterminant,expectedDeterminant*1e-6);// relative tolerance
}

/* ************************************************************************* */
/// Test to expose bug in GaussianBayesTree::logDeterminant.
TEST(GaussianBayesTree, LogDeterminant) {
using symbol_shorthand::L;
using symbol_shorthand::X;

// Create a factor graph that will result in
// a bayes tree with at least 2 nodes.
GaussianFactorGraph fg;
Key x1 = X(1), x2 = X(2), l1 = L(1);
SharedDiagonal unit2 = noiseModel::Unit::Create(2);
fg += JacobianFactor(x1, 10 * I_2x2, -1.0 * Vector2::Ones(), unit2);
fg += JacobianFactor(x2, 10 * I_2x2, x1, -10 * I_2x2, Vector2(2.0, -1.0),
unit2);
fg += JacobianFactor(l1, 5 * I_2x2, x1, -5 * I_2x2, Vector2(0.0, 1.0), unit2);
fg +=
JacobianFactor(x2, -5 * I_2x2, l1, 5 * I_2x2, Vector2(-1.0, 1.5), unit2);
fg += JacobianFactor(x3, 10 * I_2x2, x2, -10 * I_2x2, Vector2(2.0, -1.0),
unit2);
fg += JacobianFactor(x3, 10 * I_2x2, -1.0 * Vector2::Ones(), unit2);

// create corresponding Bayes net and Bayes tree:
boost::shared_ptr<gtsam::GaussianBayesNet> bn = fg.eliminateSequential();
boost::shared_ptr<gtsam::GaussianBayesTree> bt = fg.eliminateMultifrontal();

// Test logDeterminant
EXPECT_DOUBLES_EQUAL(bn->logDeterminant(), bt->logDeterminant(), 1e-9);
}

/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
/* ************************************************************************* */