-
Notifications
You must be signed in to change notification settings - Fork 767
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #1634 from achintyamohan/develop
Add cpp example for GNC
- Loading branch information
Showing
1 changed file
with
75 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,75 @@ | ||
/* ---------------------------------------------------------------------------- | ||
* GTSAM Copyright 2010, Georgia Tech Research Corporation, | ||
* Atlanta, Georgia 30332-0415 | ||
* All Rights Reserved | ||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list) | ||
* See LICENSE for the license information | ||
* -------------------------------------------------------------------------- */ | ||
|
||
/** | ||
* @file GNCExample.cpp | ||
* @brief Simple example showcasing a Graduated Non-Convexity based solver | ||
* @author Achintya Mohan | ||
*/ | ||
|
||
/** | ||
* A simple 2D pose graph optimization example | ||
* - The robot is initially at origin (0.0, 0.0, 0.0) | ||
* - We have full odometry measurements for 2 motions | ||
* - The robot first moves to (1.0, 0.0, 0.1) and then to (1.0, 1.0, 0.2) | ||
*/ | ||
|
||
#include <gtsam/geometry/Pose2.h> | ||
#include <gtsam/nonlinear/GncOptimizer.h> | ||
#include <gtsam/nonlinear/GncParams.h> | ||
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h> | ||
#include <gtsam/nonlinear/LevenbergMarquardtParams.h> | ||
#include <gtsam/nonlinear/NonlinearFactorGraph.h> | ||
#include <gtsam/slam/BetweenFactor.h> | ||
|
||
#include <iostream> | ||
|
||
using namespace std; | ||
using namespace gtsam; | ||
|
||
int main() { | ||
cout << "Graduated Non-Convexity Example\n"; | ||
|
||
NonlinearFactorGraph graph; | ||
|
||
// Add a prior to the first point, set to the origin | ||
auto priorNoise = noiseModel::Isotropic::Sigma(3, 0.1); | ||
graph.addPrior(1, Pose2(0.0, 0.0, 0.0), priorNoise); | ||
|
||
// Add additional factors, noise models must be Gaussian | ||
Pose2 x1(1.0, 0.0, 0.1); | ||
graph.emplace_shared<BetweenFactor<Pose2>>(1, 2, x1, noiseModel::Isotropic::Sigma(3, 0.2)); | ||
Pose2 x2(0.0, 1.0, 0.1); | ||
graph.emplace_shared<BetweenFactor<Pose2>>(2, 3, x2, noiseModel::Isotropic::Sigma(3, 0.4)); | ||
|
||
// Initial estimates | ||
Values initial; | ||
initial.insert(1, Pose2(0.2, 0.5, -0.1)); | ||
initial.insert(2, Pose2(0.8, 0.3, 0.1)); | ||
initial.insert(3, Pose2(0.8, 0.2, 0.3)); | ||
|
||
// Set options for the non-minimal solver | ||
LevenbergMarquardtParams lmParams; | ||
lmParams.setMaxIterations(1000); | ||
lmParams.setRelativeErrorTol(1e-5); | ||
|
||
// Set GNC-specific options | ||
GncParams<LevenbergMarquardtParams> gncParams(lmParams); | ||
gncParams.setLossType(GncLossType::TLS); | ||
|
||
// Optimize the graph and print results | ||
GncOptimizer<GncParams<LevenbergMarquardtParams>> optimizer(graph, initial, gncParams); | ||
Values result = optimizer.optimize(); | ||
result.print("Final Result:"); | ||
|
||
return 0; | ||
} | ||
|