Skip to content

Commit

Permalink
compare absolute value of error against k for Huber noise model
Browse files Browse the repository at this point in the history
  • Loading branch information
varunagrawal committed Sep 18, 2019
1 parent 60f5ee7 commit ba22688
Showing 1 changed file with 3 additions and 3 deletions.
6 changes: 3 additions & 3 deletions gtsam/linear/NoiseModel.h
Original file line number Diff line number Diff line change
Expand Up @@ -629,7 +629,7 @@ namespace gtsam {
/**
* The mEstimator name space contains all robust error functions.
* It mirrors the exposition at
* http://research.microsoft.com/en-us/um/people/zhang/INRIA/Publis/Tutorial-Estim/node24.html
* https://members.loria.fr/MOBerger/Enseignement/Master2/Documents/ZhangIVC-97-01.pdf
* which talks about minimizing \sum \rho(r_i), where \rho is a residual function of choice.
*
* To illustrate, let's consider the least-squares (L2), L1, and Huber estimators as examples:
Expand Down Expand Up @@ -681,7 +681,7 @@ namespace gtsam {
/*
* This method is responsible for returning the weight function for a given amount of error.
* The weight function is related to the analytic derivative of the residual function. See
* http://research.microsoft.com/en-us/um/people/zhang/INRIA/Publis/Tutorial-Estim/node24.html
* https://members.loria.fr/MOBerger/Enseignement/Master2/Documents/ZhangIVC-97-01.pdf
* for details. This method is required when optimizing cost functions with robust penalties
* using iteratively re-weighted least squares.
*/
Expand Down Expand Up @@ -776,7 +776,7 @@ namespace gtsam {

Huber(double k = 1.345, const ReweightScheme reweight = Block);
double weight(double error) const {
return (error < k_) ? (1.0) : (k_ / fabs(error));
return (std::abs(error) < k_) ? (1.0) : (k_ / fabs(error));
}
void print(const std::string &s) const;
bool equals(const Base& expected, double tol=1e-8) const;
Expand Down

0 comments on commit ba22688

Please sign in to comment.