Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
54 changes: 45 additions & 9 deletions python/tvm/relay/frontend/tensorflow.py
Original file line number Diff line number Diff line change
Expand Up @@ -44,6 +44,17 @@
__all__ = ["from_tensorflow"]


def check_symbolic_shape(shape):
return not all([isinstance(dim, (int, tvm.tir.IntImm)) for dim in shape])


def list_shape_of(tensor, ndim):
shape_tensor = _op.shape_of(tensor)
return [
_op.strided_slice(shape_tensor, begin=[i], end=[i + 1], strides=[1]) for i in range(ndim)
]


def _get_pad_pair(input1d, kernel1d, stride1d):
if input1d % stride1d == 0:
pad = max(kernel1d - stride1d, 0)
Expand Down Expand Up @@ -919,13 +930,31 @@ def _impl(inputs, attr, params, mod):
input_y = inputs[1]
orig_shape_x = _infer_shape(input_x, mod)
orig_shape_y = _infer_shape(input_y, mod)
ndim = len(orig_shape_x)

is_static = not check_symbolic_shape(orig_shape_x)

if ndim > 3 and not is_static:
shape_of_x = list_shape_of(inputs[0], ndim)
shape_of_y = list_shape_of(inputs[1], ndim)

# reshape n-dimensional batch matmul into 3d
if len(orig_shape_x) > 3:
if ndim > 3:
outer_dims = [orig_shape_x[i] for i in range(0, len(orig_shape_x) - 2)]
num_outer_elts = np.prod(outer_dims)
new_shape_x = (num_outer_elts, orig_shape_x[-2], orig_shape_x[-1])
new_shape_y = (num_outer_elts, orig_shape_y[-2], orig_shape_y[-1])
if is_static:
num_outer_elts = np.prod(outer_dims)
new_shape_x = (num_outer_elts, orig_shape_x[-2], orig_shape_x[-1])
new_shape_y = (num_outer_elts, orig_shape_y[-2], orig_shape_y[-1])
else: # handle dynamic shape (dyn.reshape op)
# new shape = [prod(shape[:-2]), -2, -1]
new_shape_x = [_op.const(1), shape_of_x[-2], shape_of_x[-1]]
new_shape_y = [_op.const(1), shape_of_y[-2], shape_of_y[-1]]
for i in range(ndim - 2):
new_shape_x[0] *= shape_of_x[i]
new_shape_y[0] *= shape_of_y[i]
new_shape_x = _op.concatenate(_op.Tuple(new_shape_x), axis=0)
new_shape_y = _op.concatenate(_op.Tuple(new_shape_y), axis=0)

input_x = _op.reshape(input_x, newshape=new_shape_x)
input_y = _op.reshape(input_y, newshape=new_shape_y)

Expand All @@ -936,12 +965,19 @@ def _impl(inputs, attr, params, mod):
ret = get_relay_op("batch_matmul")(input_x, input_y)

# reshape result back to n-dimensional
if len(orig_shape_x) > 3:
final_shape = list(orig_shape_x)
final_shape[-2] = orig_shape_x[-1] if adj_x else orig_shape_x[-2]
final_shape[-1] = orig_shape_y[-2] if adj_y else orig_shape_y[-1]
ret = _op.reshape(ret, newshape=final_shape)
if ndim > 3:
if is_static:
final_shape = list(orig_shape_x)
final_shape[-2] = orig_shape_x[-1] if adj_x else orig_shape_x[-2]
final_shape[-1] = orig_shape_y[-2] if adj_y else orig_shape_y[-1]
else:
# calculate the resulting shape = [shape[:-2], 0, 0]
final_shape = list(shape_of_x)
final_shape[-2] = shape_of_x[-1] if adj_x else shape_of_x[-2]
final_shape[-1] = shape_of_y[-2] if adj_y else shape_of_y[-1]
final_shape = _op.concatenate(_op.Tuple(final_shape), axis=0)

ret = _op.reshape(ret, newshape=final_shape)
return ret

return _impl
Expand Down
7 changes: 4 additions & 3 deletions python/tvm/topi/cuda/batch_matmul.py
Original file line number Diff line number Diff line change
Expand Up @@ -159,9 +159,10 @@ def batch_matmul_cublas(cfg, x, y, out_shape=None):
output : tvm.te.Tensor
3-D with shape [batch, M, N]
"""
b, m, k = x.shape
b, n, k = y.shape
cfg.add_flop(b * m * k * n * 2)
b, m, k = get_const_tuple(x.shape)
b, n, k = get_const_tuple(y.shape)
if all([isinstance(s, int) for s in [b, m, n, k]]):
cfg.add_flop(b * m * k * n * 2)
return cublas.batch_matmul(x, y, False, True)


Expand Down
11 changes: 4 additions & 7 deletions python/tvm/topi/cuda/dense.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@
# pylint: disable=invalid-name, unused-argument
"""Schedule for dense operator"""
import logging
from tvm import te, tir
from tvm import te
import tvm.autotvm as autotvm
from tvm.autotvm.task.space import SplitEntity
from tvm.contrib import cublas
Expand All @@ -39,14 +39,11 @@ def dense_cublas(cfg, data, weight, bias=None, out_dtype=None):
if out_dtype is None:
out_dtype = data.dtype
assert out_dtype == data.dtype, "Mixed precision not supported."
batch, in_dim = data.shape
out_dim, _ = weight.shape
batch, in_dim = get_const_tuple(data.shape)
out_dim, _ = get_const_tuple(weight.shape)
matmul = cublas.matmul(data, weight, False, True)
if isinstance(batch, int):
if all(isinstance(d, int) for d in [batch, in_dim, out_dim]):
cfg.add_flop(batch * in_dim * out_dim * 2)
elif isinstance(batch, tir.IntImm):
cfg.add_flop(batch.value * in_dim * out_dim * 2)
# if we get a te.Var, we cannot add flop counts
if bias is not None:
matmul = te.compute(
(batch, out_dim), lambda i, j: matmul[i, j] + bias[j], tag=tag.BROADCAST
Expand Down
52 changes: 51 additions & 1 deletion tests/python/frontend/tensorflow/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -210,6 +210,7 @@ def compare_tf_with_tvm(
mode="graph_runtime",
cuda_layout="NCHW",
add_shapes_to_graph_def=True,
targets=None,
):
"""Generic function to generate and compare tensorflow and TVM output"""

Expand All @@ -233,13 +234,18 @@ def name_without_num(name):

tf_output = run_tf_graph(sess, in_data, in_name, out_name)

for device in ["llvm", "cuda"]:
devices = targets if targets else ["llvm", "cuda"]

for device in devices:
ctx = tvm.context(device, 0)
if not tvm.testing.device_enabled(device):
print("Skip because %s is not enabled" % device)
continue
if no_gpu and device == "cuda":
continue
if "cublas" in device and not tvm.get_global_func("tvm.contrib.cublas.matmul", True):
print("Skip because cublas is not enabled: %s" % device)
continue

tvm_output = run_tvm_graph(
final_graph_def,
Expand Down Expand Up @@ -1781,6 +1787,23 @@ def _test_batch_matmul(A_shape, B_shape, dtype, adjoint_a=False, adjoint_b=False
compare_tf_with_tvm([A_np, B_np], [A.name, B.name], result.name)


def _test_batch_matmul_dynamic(
A_shape, B_shape, A_np_shape, B_np_shape, dtype, adjoint_a=False, adjoint_b=False
):
with tf.Graph().as_default():
A = tf.placeholder(shape=A_shape, dtype=dtype, name="A")
B = tf.placeholder(shape=B_shape, dtype=dtype, name="B")
result = tf.matmul(A, B, adjoint_a=adjoint_a, adjoint_b=adjoint_b, name="batchmatmul")

A_np = np.random.uniform(high=5.0, size=A_np_shape).astype(dtype)
B_np = np.random.uniform(high=5.0, size=B_np_shape).astype(dtype)
# for now, in TOPI, only cublas's implementation support dynamic shape
# TODO add more backends support in TOPI
compare_tf_with_tvm(
[A_np, B_np], [A.name, B.name], result.name, mode="vm", targets=["cuda -libs=cublas"]
)


def test_forward_batch_matmul():
""" TF op BatchMatMul, BatchMatMulV2 test"""
_test_batch_matmul((3, 5, 4), (3, 4, 5), "int32")
Expand All @@ -1793,6 +1816,33 @@ def test_forward_batch_matmul():
_test_batch_matmul((2, 3, 4, 2, 3, 4, 5, 6), (2, 3, 4, 2, 3, 4, 5, 6), "float32", False, True)


@tvm.testing.requires_cuda
def test_forward_batch_matmul_dynamic():
_test_batch_matmul_dynamic((None, 5, 4), (None, 4, 5), (3, 5, 4), (3, 4, 5), "int32")
_test_batch_matmul_dynamic(
(None, 5, 4), (None, 4, 5), (3, 5, 4), (3, 4, 5), "float32", True, True
)
_test_batch_matmul_dynamic(
(None, 5, 4), (None, 5, 4), (3, 5, 4), (3, 5, 4), "int32", True, False
)
_test_batch_matmul_dynamic(
(None, 5, 4), (None, 5, 4), (3, 5, 4), (3, 5, 4), "float32", False, True
)
_test_batch_matmul_dynamic(
(None, 4, 5, 6), (None, 4, 6, 5), (3, 4, 5, 6), (3, 4, 6, 5), "float32"
)
_test_batch_matmul_dynamic(
(None, None, 5, 6), (None, None, 6, 5), (3, 4, 5, 6), (3, 4, 6, 5), "float32"
)
_test_batch_matmul_dynamic(
(None, None, None, 5, 6),
(None, None, None, 6, 5),
(2, 3, 4, 5, 6),
(2, 3, 4, 6, 5),
"float32",
)


#######################################################################
# SparseTensorDenseMatMul
# ----------------------------------
Expand Down