-
Notifications
You must be signed in to change notification settings - Fork 1.5k
Add an example of embedding indexes inside a parquet file #16395
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
Conversation
// Compute distinct values, serialize & Base64‑encode | ||
let distinct: HashSet<_> = values.iter().copied().collect(); | ||
let serialized = distinct.iter().cloned().collect::<Vec<_>>().join("\n"); | ||
let b64 = general_purpose::STANDARD_NO_PAD.encode(serialized.as_bytes()); |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I think this writes the index into the footer itself (as an opaque string)
This has at least 2 downsides
- The footer metadata will be much larger / longer to parse
- A binary index must be converted to/from strings (as you are doing here with b64)
Is it possible to write the binary data directly into the parquet file?
Specifically, so then the metadata looks something like
// Find out where the current write position is
let offset_to_index_in_file = file.current_position()
file.write_all(distinct_index)?;
// now, finalize the file with the parquet metadata:
let props = WriterProperties::builder()
.set_key_value_metadata(Some(vec![KeyValue::new(
"distinct_index_data".into(),
offset_to_index_in_file.to_string(),
)]))
.build();
I am not sure how easy this would be to do with the current API
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Very good point @alamb! Thank you.
I will try to find a better solution, i agree the following downsides.
This has at least 2 downsides
- The footer metadata will be much larger / longer to parse
- A binary index must be converted to/from strings (as you are doing here with b64)
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I tried today, but found it's hard for current API to support this, will try it again.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Try to using low level API, but it only works when we disable page index, if we setting page index, it will follow up the real row group data, and it conflicts with our embedding indexes.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The code is here:
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Example: embedding a "distinct values" index in a Parquet file's metadata
//!
//! 1. Read existing Parquet files
//! 2. Compute distinct values for a target column using DataFusion
//! 3. Serialize the distinct index to bytes and write to the new Parquet file
//! with these encoded bytes appended as a custom metadata entry
//! 4. Read each new parquet file, extract and deserialize the index from footer
//! 5. Use the distinct index to prune files when querying
use arrow::array::{ArrayRef, StringArray};
use arrow::record_batch::RecordBatch;
use arrow_schema::{DataType, Field, Schema, SchemaRef};
use async_trait::async_trait;
use datafusion::catalog::{Session, TableProvider};
use datafusion::common::{HashMap, HashSet, Result};
use datafusion::datasource::listing::PartitionedFile;
use datafusion::datasource::memory::DataSourceExec;
use datafusion::datasource::physical_plan::{FileScanConfigBuilder, ParquetSource};
use datafusion::datasource::TableType;
use datafusion::execution::object_store::ObjectStoreUrl;
use datafusion::logical_expr::{Operator, TableProviderFilterPushDown};
use datafusion::parquet::arrow::ArrowSchemaConverter;
use datafusion::parquet::data_type::{ByteArray, ByteArrayType};
use datafusion::parquet::errors::ParquetError;
use datafusion::parquet::file::metadata::KeyValue;
use datafusion::parquet::file::properties::WriterProperties;
use datafusion::parquet::file::reader::{FileReader, SerializedFileReader};
use datafusion::parquet::file::writer::SerializedFileWriter;
use datafusion::physical_plan::ExecutionPlan;
use datafusion::prelude::*;
use datafusion::scalar::ScalarValue;
use futures::AsyncWriteExt;
use std::fs::{create_dir_all, read_dir, File};
use std::io::{Read, Seek, SeekFrom, Write};
use std::path::{Path, PathBuf};
use std::sync::Arc;
use tempfile::TempDir;
/// We should disable page index support in the Parquet reader
/// when we ennable this feature, since we are using a custom index.
///
/// Example creating parquet file that
/// contains specialized indexes that
/// are ignored by other readers
///
/// ```text
/// ┌──────────────────────┐
/// │┌───────────────────┐ │
/// ││ DataPage │ │ Standard Parquet
/// │└───────────────────┘ │ Data / pages
/// │┌───────────────────┐ │
/// ││ DataPage │ │
/// │└───────────────────┘ │
/// │ ... │
/// │ │
/// │┌───────────────────┐ │
/// ││ DataPage │ │
/// │└───────────────────┘ │
/// │┏━━━━━━━━━━━━━━━━━━━┓ │
/// │┃ ┃ │ key/value metadata
/// │┃ Special Index ┃◀┼──── that points at the
/// │┃ ┃ │ │ special index
/// │┗━━━━━━━━━━━━━━━━━━━┛ │
/// │╔═══════════════════╗ │ │
/// │║ ║ │
/// │║ Parquet Footer ║ │ │ Footer includes
/// │║ ║ ┼────── thrift-encoded
/// │║ ║ │ ParquetMetadata
/// │╚═══════════════════╝ │
/// └──────────────────────┘
///
/// Parquet File
/// ```
/// DistinctIndexTable is a custom TableProvider that reads Parquet files
#[derive(Debug)]
struct DistinctIndexTable {
schema: SchemaRef,
index: HashMap<String, HashSet<String>>,
dir: PathBuf,
}
impl DistinctIndexTable {
/// Scan a directory, read each file's footer metadata into a map
fn try_new(dir: impl Into<PathBuf>, schema: SchemaRef) -> Result<Self> {
let dir = dir.into();
let mut index = HashMap::new();
for entry in read_dir(&dir)? {
let path = entry?.path();
if path.extension().and_then(|s| s.to_str()) != Some("parquet") {
continue;
}
let file_name = path.file_name().unwrap().to_string_lossy().to_string();
let distinct_set = read_distinct_index(&path)?;
println!("Read distinct index for {}: {:?}", file_name, distinct_set);
index.insert(file_name, distinct_set);
}
Ok(Self { schema, index, dir })
}
}
pub struct IndexedParquetWriter<W: Write + Seek> {
writer: SerializedFileWriter<W>,
}
impl<W: Write + Seek + Send> IndexedParquetWriter<W> {
pub fn try_new(
sink: W,
schema: Arc<Schema>,
props: WriterProperties,
) -> Result<Self> {
let schema_desc = ArrowSchemaConverter::new().convert(schema.as_ref())?;
let props_ptr = Arc::new(props);
let writer =
SerializedFileWriter::new(sink, schema_desc.root_schema_ptr(), props_ptr)?;
Ok(Self { writer })
}
}
const INDEX_MAGIC: &[u8] = b"IDX1";
fn write_file_with_index(path: &Path, values: &[&str]) -> Result<()> {
let field = Field::new("category", DataType::Utf8, false);
let schema = Arc::new(Schema::new(vec![field.clone()]));
let arr: ArrayRef = Arc::new(StringArray::from(values.to_vec()));
let batch = RecordBatch::try_new(schema.clone(), vec![arr])?;
let distinct: HashSet<_> = values.iter().copied().collect();
let serialized = distinct.into_iter().collect::<Vec<_>>().join("\n");
let index_bytes = serialized.into_bytes();
let props = WriterProperties::builder().build();
let file = File::create(path)?;
let mut writer = IndexedParquetWriter::try_new(file, schema.clone(), props)?;
{
let mut rg_writer = writer.writer.next_row_group()?;
let mut ser_col_writer = rg_writer
.next_column()?
.ok_or_else(|| ParquetError::General("No column writer".into()))?;
let col_writer = ser_col_writer.typed::<ByteArrayType>();
let values_bytes: Vec<ByteArray> = batch
.column(0)
.as_any()
.downcast_ref::<StringArray>()
.unwrap()
.iter()
.map(|opt| ByteArray::from(opt.unwrap()))
.collect();
println!("Writing values: {:?}", values_bytes);
col_writer.write_batch(&values_bytes, None, None)?;
ser_col_writer.close()?;
rg_writer.close()?;
}
let offset = writer.writer.inner().seek(SeekFrom::Current(0))?;
let index_len = index_bytes.len() as u64;
writer.writer.inner().write_all(b"IDX1")?;
writer.writer.inner().write_all(&index_len.to_le_bytes())?;
writer.writer.inner().write_all(&index_bytes)?;
writer.writer.append_key_value_metadata(KeyValue::new(
"distinct_index_offset".to_string(),
offset.to_string(),
));
writer.writer.append_key_value_metadata(KeyValue::new(
"distinct_index_length".to_string(),
index_bytes.len().to_string(),
));
writer.writer.close()?;
println!("Finished writing file to {}", path.display());
Ok(())
}
fn read_distinct_index(path: &Path) -> Result<HashSet<String>, ParquetError> {
let mut file = File::open(path)?;
let file_size = file.metadata()?.len();
println!(
"Reading index from {} (size: {})",
path.display(),
file_size
);
let reader = SerializedFileReader::new(file.try_clone()?)?;
let meta = reader.metadata().file_metadata();
let offset = meta
.key_value_metadata()
.and_then(|kvs| kvs.iter().find(|kv| kv.key == "distinct_index_offset"))
.and_then(|kv| kv.value.as_ref())
.ok_or_else(|| ParquetError::General("Missing index offset".into()))?
.parse::<u64>()
.map_err(|e| ParquetError::General(e.to_string()))?;
let length = meta
.key_value_metadata()
.and_then(|kvs| kvs.iter().find(|kv| kv.key == "distinct_index_length"))
.and_then(|kv| kv.value.as_ref())
.ok_or_else(|| ParquetError::General("Missing index length".into()))?
.parse::<usize>()
.map_err(|e| ParquetError::General(e.to_string()))?;
println!("Reading index at offset: {}, length: {}", offset, length);
file.seek(SeekFrom::Start(offset))?;
let mut magic_buf = [0u8; 4];
file.read_exact(&mut magic_buf)?;
if &magic_buf != INDEX_MAGIC {
return Err(ParquetError::General("Invalid index magic".into()));
}
let mut len_buf = [0u8; 8];
file.read_exact(&mut len_buf)?;
let stored_len = u64::from_le_bytes(len_buf) as usize;
if stored_len != length {
return Err(ParquetError::General("Index length mismatch".into()));
}
let mut index_buf = vec![0u8; length];
file.read_exact(&mut index_buf)?;
let s =
String::from_utf8(index_buf).map_err(|e| ParquetError::General(e.to_string()))?;
Ok(s.lines().map(|s| s.to_string()).collect())
}
/// Implement TableProvider for DistinctIndexTable, using the distinct index to prune files
#[async_trait]
impl TableProvider for DistinctIndexTable {
fn as_any(&self) -> &dyn std::any::Any {
self
}
fn schema(&self) -> SchemaRef {
self.schema.clone()
}
fn table_type(&self) -> TableType {
TableType::Base
}
/// Prune files before reading: only keep files whose distinct set contains the filter value
async fn scan(
&self,
_ctx: &dyn Session,
_proj: Option<&Vec<usize>>,
filters: &[Expr],
_limit: Option<usize>,
) -> Result<Arc<dyn ExecutionPlan>> {
// Look for a single `category = 'X'` filter
let mut target: Option<String> = None;
if filters.len() == 1 {
if let Expr::BinaryExpr(expr) = &filters[0] {
if expr.op == Operator::Eq {
if let (
Expr::Column(c),
Expr::Literal(ScalarValue::Utf8(Some(v)), _),
) = (&*expr.left, &*expr.right)
{
if c.name == "category" {
println!("Filtering for category: {v}");
target = Some(v.clone());
}
}
}
}
}
// Determine which files to scan
let keep: Vec<String> = self
.index
.iter()
.filter(|(_f, set)| target.as_ref().is_none_or(|v| set.contains(v)))
.map(|(f, _)| f.clone())
.collect();
println!("Pruned files: {:?}", keep.clone());
// Build ParquetSource for kept files
let url = ObjectStoreUrl::parse("file://")?;
let source = Arc::new(ParquetSource::default());
let mut builder = FileScanConfigBuilder::new(url, self.schema.clone(), source);
for file in keep {
let path = self.dir.join(&file);
let len = std::fs::metadata(&path)?.len();
builder = builder.with_file(PartitionedFile::new(
path.to_str().unwrap().to_string(),
len,
));
}
Ok(DataSourceExec::from_data_source(builder.build()))
}
fn supports_filters_pushdown(
&self,
fs: &[&Expr],
) -> Result<Vec<TableProviderFilterPushDown>> {
// Mark as inexact since pruning is file‑granular
Ok(vec![TableProviderFilterPushDown::Inexact; fs.len()])
}
}
#[tokio::main]
async fn main() -> Result<()> {
// 1. Create temp dir and write 3 Parquet files with different category sets
let tmp = TempDir::new()?;
let dir = tmp.path();
create_dir_all(dir)?;
write_file_with_index(&dir.join("a.parquet"), &["foo", "bar", "foo"])?;
write_file_with_index(&dir.join("b.parquet"), &["baz", "qux"])?;
write_file_with_index(&dir.join("c.parquet"), &["foo", "quux", "quux"])?;
// 2. Register our custom TableProvider
let field = Field::new("category", DataType::Utf8, false);
let schema_ref = Arc::new(Schema::new(vec![field]));
let provider = Arc::new(DistinctIndexTable::try_new(dir, schema_ref.clone())?);
let ctx = SessionContext::new();
ctx.register_table("t", provider)?;
// 3. Run a query: only files containing 'foo' get scanned
let df = ctx.sql("SELECT * FROM t").await?;
df.show().await?;
// 3. Run a query: only files containing 'foo' get scanned
let df = ctx.sql("SELECT * FROM t WHERE category = 'foo'").await?;
df.show().await?;
Ok(())
}
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This looks super cool @zhuqi-lucas
Try to using low level API, but it only works when we disable page index, if we setting page index, it will follow up the real row group data, and it conflicts with our embedding indexes.
I don't fully understand this concern -- I would probably have to play around with it some more
Are you willing to update this PR with this new example? I have some ideas on the various APIs we could use (like we could potentially encapsulate the index writing some more)
We could also then file a ticket upstream i arrow-rs with a description of what wasn't working with page indexes
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Thank you @alamb , updated the code without page index using low level API, i will continue debugging the case that our self defined index with page index.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Thank you @zhuqi-lucas -- this is really neat. I left some thoughts -- let me know what you think
|
||
// Note: we disable page index support here since we are using a custom index, it has conflicts when testing. | ||
// TODO: Remove this when we have a better solution for custom indexes with page index support. | ||
let source = Arc::new(ParquetSource::default().with_enable_page_index(false)); |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Thank you @alamb Currently, i disable the page index for reading, so this example will succeed, but if we enable page index, it will fail due to:
- We are writing the self defined index just after the data.
- But it seems, the page index offset info will write to the same place.
- I can't find a solution until now, need some help.
Thanks!
Which issue does this PR close?
Rationale for this change
What changes are included in this PR?
Are these changes tested?
Are there any user-facing changes?