Closed
Description
First, I wonder if it is possible to visualize across three ontologies.
The three GO aspects are is a disjoint, meaning that no is a relation exists between terms from the different ontology aspects. However, other relationships such as part of and occurs in can operate between terms from different GO aspects.
https://geneontology.org/docs/ontology-documentation/
If it's possible, how can I visualize them in one plot?
I tried the following code, but got errors.
# code for reproduce
library(clusterProfiler)
data(geneList, package = "DOSE")
de <- names(geneList)[1:100]
if (file.exists("tmp/yy_all.RDS")) {
yy <- readRDS("tmp/yy_all.RDS")
} else {
yy <- enrichGO(de, 'org.Hs.eg.db', ont="ALL", pvalueCutoff=0.01
, pool = T # I have tried this arugment T and F
)
saveRDS(yy, "tmp/yy_all.RDS")
}
goplot(yy)
Output
> goplot(yy)
GOALL.sqlite is not found, download it online...
Error in `httr2::req_perform()`:
! HTTP 404 Not Found.
Run `rlang::last_trace()` to see where the error occurred.
I tried to debug(goplot)
, and got infinite error messages. Therefore I shut down the R from outside.
Error: INTEGER() can only be applied to a 'integer', not a 'unknown type #29'
In addition: Warning message:
type 29 is unimplemented in 'type2char'
session.info
> xfun::session_info()
R version 4.5.0 (2025-04-11 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows 10 x64 (build 19045), RStudio 2023.12.1.402
Locale:
LC_COLLATE=Japanese_Japan.utf8 LC_CTYPE=Japanese_Japan.utf8 LC_MONETARY=Japanese_Japan.utf8
LC_NUMERIC=C LC_TIME=Japanese_Japan.utf8
Package version:
AnnotationDbi_1.70.0 ape_5.8-1 aplot_0.2.5 askpass_1.2.1
backports_1.5.0 BH_1.87.0.1 Biobase_2.68.0 BiocGenerics_0.54.0
BiocParallel_1.42.0 Biostrings_2.76.0 bit_4.6.0 bit64_4.6.0-1
blob_1.2.4 boot_1.3.31 broom_1.0.8 cachem_1.1.0
callr_3.7.6 class_7.3.23 cli_3.6.5 clipr_0.8.0
clusterProfiler_4.16.0 codetools_0.2-20 colorspace_2.1-1 compiler_4.5.0
consort_1.2.2 cowplot_1.1.3 cpp11_0.5.2 crayon_1.5.3
curl_6.2.2 data.table_1.17.0 DBI_1.2.3 Deriv_4.1.6
desc_1.4.3 digest_0.6.37 doBy_4.6.26 DOSE_4.2.0
dplyr_1.1.4 e1071_1.7.16 enrichplot_1.28.0 fansi_1.0.6
farver_2.1.2 fastmap_1.2.0 fastmatch_1.1-6 fgsea_1.34.0
forcats_1.0.0 formatR_1.14 fs_1.6.6 futile.logger_1.4.3
futile.options_1.0.1 gdata_3.0.1 generics_0.1.3 GenomeInfoDb_1.44.0
GenomeInfoDbData_1.2.14 ggforce_0.4.2 ggfun_0.1.8 ggnewscale_0.5.1
ggplot2_3.5.2 ggplotify_0.1.2 ggrepel_0.9.6 ggtangle_0.0.6
ggtree_3.16.0 glue_1.8.0 gmodels_2.19.1 GO.db_3.21.0
GOSemSim_2.34.0 graphics_4.5.0 grDevices_4.5.0 grid_4.5.0
gridGraphics_0.5-1 gson_0.1.0 gtable_0.3.6 gtools_3.9.5
haven_2.5.4 hms_1.1.3 httr_1.4.7 httr2_1.1.2
igraph_2.1.4 IRanges_2.42.0 isoband_0.2.7 jsonlite_2.0.0
KEGGREST_1.48.0 labeling_0.4.3 labelled_2.14.0 lambda.r_1.2.4
lattice_0.22-7 lazyeval_0.2.2 lifecycle_1.0.4 magrittr_2.0.3
MASS_7.3.65 Matrix_1.7-3 memoise_2.0.1 methods_4.5.0
mgcv_1.9.3 microbenchmark_1.5.0 mime_0.13 minqa_1.2.8
mitools_2.4 modelr_0.1.11 nlme_3.1-168 numDeriv_2016.8.1.1
openssl_2.3.2 org.Hs.eg.db_3.21.0 parallel_4.5.0 patchwork_1.3.0
pillar_1.10.2 pkgbuild_1.4.7 pkgconfig_2.0.3 pkgload_1.4.0
plogr_0.2.0 plyr_1.8.9 png_0.1-8 polyclip_1.10.7
prettyunits_1.2.0 processx_3.8.6 progress_1.2.3 proxy_0.4.27
ps_1.9.1 purrr_1.0.4 qvalue_2.40.0 R.methodsS3_1.8.2
R.oo_1.27.0 R.utils_2.13.0 R6_2.6.1 rappdirs_0.3.3
RColorBrewer_1.1-3 Rcpp_1.0.14 RcppArmadillo_14.4.2.1 RcppEigen_0.3.4.0.2
readr_2.1.5 reshape2_1.4.4 rlang_1.1.6 rprojroot_2.0.4
RSQLite_2.3.9 rstudioapi_0.17.1 S4Vectors_0.46.0 scales_1.4.0
scatterpie_0.2.4 snow_0.4.4 splines_4.5.0 stats_4.5.0
stats4_4.5.0 stringi_1.8.7 stringr_1.5.1 survey_4.4.2
survival_3.8.3 sys_3.4.3 systemfonts_1.2.2 t3f2_0.0.0.9000
tableone_0.13.2 tibble_3.2.1 tidyr_1.3.1 tidyselect_1.2.1
tidytree_0.4.6 tools_4.5.0 treeio_1.32.0 tweenr_2.0.3
tzdb_0.5.0 UCSC.utils_1.4.0 utf8_1.2.4 utils_4.5.0
vctrs_0.6.5 viridisLite_0.4.2 vroom_1.6.5 withr_3.0.2
xfun_0.52 XVector_0.48.0 yulab.utils_0.2.0 zoo_1.8.14
Metadata
Metadata
Assignees
Labels
No labels