Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Refine sentences for more comprehensible in Chinese #338

Merged
merged 4 commits into from
Dec 28, 2023
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
Update ch1.md for more comprehensible in Chinese
Update ch1.md for more comprehensible in Chinese
  • Loading branch information
YKIsTheBest authored Dec 28, 2023
commit d257a8d029fa7e954c2da59fb28ece27e35dad29
2 changes: 1 addition & 1 deletion ch1.md
Original file line number Diff line number Diff line change
Expand Up @@ -241,7 +241,7 @@
>
> 在多重调用的后端服务里,高百分位数变得特别重要。即使并行调用,最终用户请求仍然需要等待最慢的并行调用完成。如 [图 1-5](img/fig1-5.png) 所示,只需要一个缓慢的调用就可以使整个最终用户请求变慢。即使只有一小部分后端调用速度较慢,如果最终用户请求需要多个后端调用,则获得较慢调用的机会也会增加,因此较高比例的最终用户请求速度会变慢(效果称为尾部延迟放大【24】)。
>
> 如果你想将响应时间百分点添加到你的服务的监视仪表板,则需要持续有效地计算它们。例如,在连续 10 分钟的请求资料响应时间的统计上,你可能会用一个可滑动的视窗范围为基础。每一分钟,你都会计算出该视窗中的响应时间中值和各种百分数,并将这些度量值绘制在图上。
> 如果你想将响应时间百分点添加到你的服务的监视仪表板,则需要持续有效地计算它们。例如,你可以使用滑动窗口来跟踪连续10分钟内的请求响应时间。每一分钟,你都会计算出该视窗中的响应时间中值和各种百分数,并将这些度量值绘制在图上。
>
> 简单的实现是在时间窗口内保存所有请求的响应时间列表,并且每分钟对列表进行排序。如果对你来说效率太低,那么有一些算法能够以最小的 CPU 和内存成本(如前向衰减【25】、t-digest【26】或 HdrHistogram 【27】)来计算百分位数的近似值。请注意,平均百分比(例如,减少时间分辨率或合并来自多台机器的数据)在数学上没有意义 - 聚合响应时间数据的正确方法是添加直方图【28】。

Expand Down