Skip to content

gym - handle uint8_visual for observation space #2783

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Oct 24, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
27 changes: 18 additions & 9 deletions gym-unity/gym_unity/envs/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,6 +51,11 @@ def __init__(
self._env = UnityEnvironment(
environment_filename, worker_id, no_graphics=no_graphics
)

# Take a single step so that the brain information will be sent over
if not self._env.brains:
self._env.step()

self.name = self._env.academy_name
self.visual_obs = None
self._current_state = None
Expand Down Expand Up @@ -132,16 +137,20 @@ def __init__(
high = np.array([np.inf] * brain.vector_observation_space_size)
self.action_meanings = brain.vector_action_descriptions
if self.use_visual:
self._observation_space = spaces.Box(
0,
1,
dtype=np.float32,
shape=(
brain.camera_resolutions.height,
brain.camera_resolutions.width,
brain.camera_resolutions.num_channels,
),
shape = (
brain.camera_resolutions[0].height,
brain.camera_resolutions[0].width,
brain.camera_resolutions[0].num_channels,
)
if uint8_visual:
self._observation_space = spaces.Box(
0, 255, dtype=np.uint8, shape=shape
)
else:
self._observation_space = spaces.Box(
0, 1, dtype=np.float32, shape=shape
)

else:
self._observation_space = spaces.Box(-high, high, dtype=np.float32)

Expand Down
31 changes: 30 additions & 1 deletion gym-unity/gym_unity/tests/test_gym.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@

from gym import spaces
from gym_unity.envs import UnityEnv, UnityGymException
from mlagents.envs.brain import CameraResolution


@mock.patch("gym_unity.envs.UnityEnvironment")
Expand All @@ -18,6 +19,7 @@ def test_gym_wrapper(mock_env):
actions = env.action_space.sample()
assert actions.shape[0] == 2
obs, rew, done, info = env.step(actions)
assert env.observation_space.contains(obs)
assert isinstance(obs, np.ndarray)
assert isinstance(rew, float)
assert isinstance(done, bool)
Expand Down Expand Up @@ -62,6 +64,26 @@ def test_branched_flatten(mock_env):
assert isinstance(env.action_space, spaces.MultiDiscrete)


@pytest.mark.parametrize("use_uint8", [True, False], ids=["float", "uint8"])
@mock.patch("gym_unity.envs.UnityEnvironment")
def test_gym_wrapper_visual(mock_env, use_uint8):
mock_brain = create_mock_brainparams(number_visual_observations=1)
mock_braininfo = create_mock_vector_braininfo(number_visual_observations=1)
setup_mock_unityenvironment(mock_env, mock_brain, mock_braininfo)

env = UnityEnv(" ", use_visual=True, multiagent=False, uint8_visual=use_uint8)
assert isinstance(env, UnityEnv)
assert isinstance(env.reset(), np.ndarray)
actions = env.action_space.sample()
assert actions.shape[0] == 2
obs, rew, done, info = env.step(actions)
assert env.observation_space.contains(obs)
assert isinstance(obs, np.ndarray)
assert isinstance(rew, float)
assert isinstance(done, bool)
assert isinstance(info, dict)


# Helper methods


Expand All @@ -80,6 +102,11 @@ def create_mock_brainparams(
vector_action_space_size = [2]
mock_brain = mock.Mock()
mock_brain.return_value.number_visual_observations = number_visual_observations
if number_visual_observations:
mock_brain.return_value.camera_resolutions = [
CameraResolution(width=8, height=8, num_channels=3)
for _ in range(number_visual_observations)
]
mock_brain.return_value.num_stacked_vector_observations = (
num_stacked_vector_observations
)
Expand All @@ -91,7 +118,7 @@ def create_mock_brainparams(
return mock_brain()


def create_mock_vector_braininfo(num_agents=1):
def create_mock_vector_braininfo(num_agents=1, number_visual_observations=0):
"""
Creates a mock BrainInfo with vector observations. Imitates constant
vector observations, rewards, dones, and agents.
Expand All @@ -100,6 +127,8 @@ def create_mock_vector_braininfo(num_agents=1):
"""
mock_braininfo = mock.Mock()
mock_braininfo.return_value.vector_observations = np.array([num_agents * [1, 2, 3]])
if number_visual_observations:
mock_braininfo.return_value.visual_observations = [[np.zeros(shape=(8, 8, 3))]]
mock_braininfo.return_value.rewards = num_agents * [1.0]
mock_braininfo.return_value.local_done = num_agents * [False]
mock_braininfo.return_value.text_observations = num_agents * [""]
Expand Down