Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Feature/weaviate memory #424

Merged
Merged
Show file tree
Hide file tree
Changes from 31 commits
Commits
Show all changes
39 commits
Select commit Hold shift + click to select a range
986d32c
added support for multiple memory provider and added weaviate integra…
csolar Apr 7, 2023
da4ba3c
added factory tests
csolar Apr 7, 2023
1e63bc5
Merge branch 'master' into feature/weaviate-memory
cs0lar Apr 8, 2023
0ce0c55
the three memory related commands memory_add, memory_del, memory_ovr …
cs0lar Apr 8, 2023
97ac802
resolved conflicts between master and feature/weaviate-memory
csolar Apr 8, 2023
76a1462
moved pinecone api config settings into provider class
csolar Apr 8, 2023
5fe784a
added weaviate to the supported vector memory providers
cs0lar Apr 11, 2023
786ee60
fixed formatting
csolar Apr 11, 2023
3c7767f
fixed formatting
csolar Apr 11, 2023
96c5e92
added support for weaviate embedded
cs0lar Apr 12, 2023
453b428
added support for weaviate embedded
csolar Apr 12, 2023
75c4132
Merge pull request #1 from cs0lar/feature/weaviate-embedded
cs0lar Apr 12, 2023
f2a6ac5
fixed order and removed dupes
csolar Apr 12, 2023
e3aea6d
added weaviate embedded section in README
csolar Apr 12, 2023
67b84b5
added client install
csolar Apr 12, 2023
b9a4f97
resolved latest conflicts
csolar Apr 12, 2023
415c1cb
fixed quotes
csolar Apr 12, 2023
35ecd95
removed unnecessary flush()
csolar Apr 12, 2023
b7d0cc3
removed the extra class property
csolar Apr 12, 2023
5308946
added support of API key based auth
csolar Apr 12, 2023
5592dbd
resolved latest conflicts
csolar Apr 12, 2023
855de18
Merge branch 'master' into feature/weaviate-memory
cs0lar Apr 13, 2023
067e697
fixed weaviate test and fixed conflicts
cs0lar Apr 13, 2023
2f8cf68
fixed conflicts
cs0lar Apr 13, 2023
0c3562f
fixed config bug
cs0lar Apr 13, 2023
a94b93b
fixed conflicts
csolar Apr 13, 2023
4c7deef
merged master and resolved conflicts
cs0lar Apr 15, 2023
b987cff
Merge branch 'master' into feature/weaviate-memory
cs0lar Apr 15, 2023
005be02
fixed typo
cs0lar Apr 15, 2023
b2bfd39
fixed formatting
cs0lar Apr 15, 2023
2678a5a
fixed merge conflicts
cs0lar Apr 15, 2023
8916b76
fixed change request
csolar Apr 15, 2023
899c815
fixed auth code
csolar Apr 15, 2023
5122422
fixed merge conflicts
cs0lar Apr 15, 2023
03d2032
merged master and resolved conflicts
cs0lar Apr 15, 2023
23b89b8
merged master and resolved conflicts
cs0lar Apr 16, 2023
4cd412c
Update requirements.txt
BillSchumacher Apr 16, 2023
37a1dc1
Merge branch 'master' into feature/weaviate-memory
BillSchumacher Apr 16, 2023
b865e2c
Fix README
BillSchumacher Apr 16, 2023
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 21 additions & 0 deletions .env.template
Original file line number Diff line number Diff line change
Expand Up @@ -77,6 +77,27 @@ REDIS_PASSWORD=
WIPE_REDIS_ON_START=False
MEMORY_INDEX=auto-gpt

### WEAVIATE
# MEMORY_BACKEND - Use 'weaviate' to use Weaviate vector storage
# WEAVIATE_HOST - Weaviate host IP
# WEAVIATE_PORT - Weaviate host port
# WEAVIATE_PROTOCOL - Weaviate host protocol (e.g. 'http')
# USE_WEAVIATE_EMBEDDED - Whether to use Embedded Weaviate
# WEAVIATE_EMBEDDED_PATH - File system path were to persist data when running Embedded Weaviate
# WEAVIATE_USERNAME - Weaviate username
# WEAVIATE_PASSWORD - Weaviate password
# WEAVIATE_API_KEY - Weaviate API key if using API-key-based authentication
# MEMORY_INDEX - Name of index to create in Weaviate
WEAVIATE_HOST="127.0.0.1"
WEAVIATE_PORT=8080
WEAVIATE_PROTOCOL="http"
USE_WEAVIATE_EMBEDDED=False
WEAVIATE_EMBEDDED_PATH="/home/me/.local/share/weaviate"
WEAVIATE_USERNAME=
WEAVIATE_PASSWORD=
WEAVIATE_API_KEY=
MEMORY_INDEX=AutoGpt

### MILVUS
# MILVUS_ADDR - Milvus remote address (e.g. localhost:19530)
# MILVUS_COLLECTION - Milvus collection,
Expand Down
22 changes: 22 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -301,6 +301,28 @@ export PINECONE_ENV="Your pinecone region" # something like: us-east4-gcp
export MEMORY_BACKEND="pinecone"
```

## Weaviate Setup

[Weaviate](https://weaviate.io/) is an open-source vector database. It allows to store data objects and vector embeddings from ML-models and scales seamlessly to billion of data objects. [An instance of Weaviate can be created locally (using Docker), on Kubernetes or using Weaviate Cloud Services](https://weaviate.io/developers/weaviate/quickstart).
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@cs0lar should also mention embedded weaviate here.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

good spot, thanks! This is now done.

Although still experimental, [Embedded Weaviate](https://weaviate.io/developers/weaviate/installation/embedded) is supported which allows the Auto-GPT process itself to start a Weaviate instance. To enable it, set `USE_WEAVIATE_EMBEDDED` to `True` and make sure you `pip install "weaviate-client>=3.15.4"`.

#### Setting up environment variables

In your `.env` file set the following:

```
MEMORY_BACKEND=weaviate
WEAVIATE_HOST="127.0.0.1" # the IP or domain of the running Weaviate instance
WEAVIATE_PORT="8080"
WEAVIATE_PROTOCOL="http"
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

We should add something like "set USE_WEAVIATE_EMBEDDED=True if you want to use embedded weaviate"

WEAVIATE_USERNAME="your username"
WEAVIATE_PASSWORD="your password"
WEAVIATE_API_KEY="your weaviate API key if you have one"
WEAVIATE_EMBEDDED_PATH="/home/me/.local/share/weaviate" # this is optional and indicates where the data should be persisted when running an embedded instance
USE_WEAVIATE_EMBEDDED=False # set to True to run Embedded Weaviate
MEMORY_INDEX="Autogpt" # name of the index to create for the application
```

## Setting Your Cache Type

By default Auto-GPT is going to use LocalCache instead of redis or Pinecone.
Expand Down
10 changes: 10 additions & 0 deletions autogpt/config/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -62,6 +62,16 @@ def __init__(self) -> None:
self.pinecone_api_key = os.getenv("PINECONE_API_KEY")
self.pinecone_region = os.getenv("PINECONE_ENV")

self.weaviate_host = os.getenv("WEAVIATE_HOST")
self.weaviate_port = os.getenv("WEAVIATE_PORT")
self.weaviate_protocol = os.getenv("WEAVIATE_PROTOCOL", "http")
self.weaviate_username = os.getenv("WEAVIATE_USERNAME", None)
self.weaviate_password = os.getenv("WEAVIATE_PASSWORD", None)
self.weaviate_scopes = os.getenv("WEAVIATE_SCOPES", None)
self.weaviate_embedded_path = os.getenv("WEAVIATE_EMBEDDED_PATH")
self.weaviate_api_key = os.getenv("WEAVIATE_API_KEY", None)
self.use_weaviate_embedded = os.getenv("USE_WEAVIATE_EMBEDDED", "False") == "True"

# milvus configuration, e.g., localhost:19530.
self.milvus_addr = os.getenv("MILVUS_ADDR", "localhost:19530")
self.milvus_collection = os.getenv("MILVUS_COLLECTION", "autogpt")
Expand Down
15 changes: 14 additions & 1 deletion autogpt/memory/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,12 @@
print("Pinecone not installed. Skipping import.")
PineconeMemory = None

try:
from memory.weaviate import WeaviateMemory
except ImportError:
print("Weaviate not installed. Skipping import.")
WeaviateMemory = None

try:
from memory.milvus import MilvusMemory
except ImportError:
Expand Down Expand Up @@ -48,6 +54,13 @@ def get_memory(cfg, init=False):
)
else:
memory = RedisMemory(cfg)
elif cfg.memory_backend == "weaviate":
if not WeaviateMemory:
print("Error: Weaviate is not installed. Please install weaviate-client to"
" use Weaviate as a memory backend.")
else:
memory = WeaviateMemory(cfg)

elif cfg.memory_backend == "no_memory":
memory = NoMemory(cfg)
elif cfg.memory_backend == "milvus":
Expand All @@ -68,4 +81,4 @@ def get_supported_memory_backends():
return supported_memory


__all__ = ["get_memory", "LocalCache", "RedisMemory", "PineconeMemory", "NoMemory", "MilvusMemory"]
__all__ = ["get_memory", "LocalCache", "RedisMemory", "PineconeMemory", "WeaviateMemory", "MilvusMemory", "NoMemory"]
110 changes: 110 additions & 0 deletions autogpt/memory/weaviate.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,110 @@
from autogpt.config import Config
from autogpt.memory.base import MemoryProviderSingleton, get_ada_embedding
import uuid
import weaviate
from weaviate import Client
from weaviate.embedded import EmbeddedOptions
from weaviate.util import generate_uuid5


def default_schema(weaviate_index):
return {
"class": weaviate_index,
"properties": [
{
"name": "raw_text",
"dataType": ["text"],
"description": "original text for the embedding"
}
],
}


class WeaviateMemory(MemoryProviderSingleton):
def __init__(self, cfg):
auth_credentials = self._build_auth_credentials(cfg)

url = f'{cfg.weaviate_protocol}://{cfg.weaviate_host}:{cfg.weaviate_port}'

if cfg.use_weaviate_embedded:
self.client = Client(embedded_options=EmbeddedOptions(
hostname=cfg.weaviate_host,
port=int(cfg.weaviate_port),
persistence_data_path=cfg.weaviate_embedded_path
))

print(f"Weaviate Embedded running on: {url} with persistence path: {cfg.weaviate_embedded_path}")
else:
self.client = Client(url, auth_client_secret=auth_credentials)

self.index = cfg.memory_index
self._create_schema()

def _create_schema(self):
schema = default_schema(self.index)
if not self.client.schema.contains(schema):
self.client.schema.create_class(schema)

def _build_auth_credentials(self, cfg):
if cfg.weaviate_username and cfg.weaviate_password:
return weaviate_auth.AuthClientPassword(cfg.weaviate_username, cfg.weaviate_password)
if cfg.weaviate_api_key:
return weaviate.auth.AuthApiKey(api_key=cfg.weaviate_api_key)
else:
return None

def add(self, data):
vector = get_ada_embedding(data)

doc_uuid = generate_uuid5(data, self.index)
data_object = {
'raw_text': data
}

with self.client.batch as batch:
batch.add_data_object(
uuid=doc_uuid,
data_object=data_object,
class_name=self.index,
vector=vector
)

return f"Inserting data into memory at uuid: {doc_uuid}:\n data: {data}"

def get(self, data):
return self.get_relevant(data, 1)

def clear(self):
self.client.schema.delete_all()

# weaviate does not yet have a neat way to just remove the items in an index
# without removing the entire schema, therefore we need to re-create it
# after a call to delete_all
self._create_schema()

return 'Obliterated'

def get_relevant(self, data, num_relevant=5):
query_embedding = get_ada_embedding(data)
try:
results = self.client.query.get(self.index, ['raw_text']) \
.with_near_vector({'vector': query_embedding, 'certainty': 0.7}) \
.with_limit(num_relevant) \
.do()

if len(results['data']['Get'][self.index]) > 0:
return [str(item['raw_text']) for item in results['data']['Get'][self.index]]
else:
return []

except Exception as err:
print(f'Unexpected error {err=}, {type(err)=}')
return []

def get_stats(self):
result = self.client.query.aggregate(self.index) \
.with_meta_count() \
.do()
class_data = result['data']['Aggregate'][self.index]

return class_data[0]['meta'] if class_data else {}
1 change: 1 addition & 0 deletions requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@ pymilvus==2.2.4
redis
orjson
Pillow
weaviate-client==3.15.5
selenium
webdriver-manager
coverage
Expand Down
117 changes: 117 additions & 0 deletions tests/integration/weaviate_memory_tests.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,117 @@
import unittest
from unittest import mock
import sys
import os

from weaviate import Client
from weaviate.util import get_valid_uuid
from uuid import uuid4

from autogpt.config import Config
from autogpt.memory.weaviate import WeaviateMemory
from autogpt.memory.base import get_ada_embedding


@mock.patch.dict(os.environ, {
"WEAVIATE_HOST": "127.0.0.1",
"WEAVIATE_PROTOCOL": "http",
"WEAVIATE_PORT": "8080",
"WEAVIATE_USERNAME": "",
"WEAVIATE_PASSWORD": "",
"MEMORY_INDEX": "AutogptTests"
})
class TestWeaviateMemory(unittest.TestCase):
cfg = None
client = None

@classmethod
def setUpClass(cls):
# only create the connection to weaviate once
cls.cfg = Config()

if cls.cfg.use_weaviate_embedded:
from weaviate.embedded import EmbeddedOptions

cls.client = Client(embedded_options=EmbeddedOptions(
hostname=cls.cfg.weaviate_host,
port=int(cls.cfg.weaviate_port),
persistence_data_path=cls.cfg.weaviate_embedded_path
))
else:
cls.client = Client(f"{cls.cfg.weaviate_protocol}://{cls.cfg.weaviate_host}:{self.cfg.weaviate_port}")

"""
In order to run these tests you will need a local instance of
Weaviate running. Refer to https://weaviate.io/developers/weaviate/installation/docker-compose
for creating local instances using docker.
Alternatively in your .env file set the following environmental variables to run Weaviate embedded (see: https://weaviate.io/developers/weaviate/installation/embedded):

USE_WEAVIATE_EMBEDDED=True
WEAVIATE_EMBEDDED_PATH="/home/me/.local/share/weaviate"
"""
def setUp(self):
try:
self.client.schema.delete_class(self.cfg.memory_index)
except:
pass

self.memory = WeaviateMemory(self.cfg)

def test_add(self):
doc = 'You are a Titan name Thanos and you are looking for the Infinity Stones'
self.memory.add(doc)
result = self.client.query.get(self.cfg.memory_index, ['raw_text']).do()
actual = result['data']['Get'][self.cfg.memory_index]

self.assertEqual(len(actual), 1)
self.assertEqual(actual[0]['raw_text'], doc)

def test_get(self):
doc = 'You are an Avenger and swore to defend the Galaxy from a menace called Thanos'

with self.client.batch as batch:
batch.add_data_object(
uuid=get_valid_uuid(uuid4()),
data_object={'raw_text': doc},
class_name=self.cfg.memory_index,
vector=get_ada_embedding(doc)
)

batch.flush()

actual = self.memory.get(doc)

self.assertEqual(len(actual), 1)
self.assertEqual(actual[0], doc)

def test_get_stats(self):
docs = [
'You are now about to count the number of docs in this index',
'And then you about to find out if you can count correctly'
]

[self.memory.add(doc) for doc in docs]

stats = self.memory.get_stats()

self.assertTrue(stats)
self.assertTrue('count' in stats)
self.assertEqual(stats['count'], 2)

def test_clear(self):
docs = [
'Shame this is the last test for this class',
'Testing is fun when someone else is doing it'
]

[self.memory.add(doc) for doc in docs]

self.assertEqual(self.memory.get_stats()['count'], 2)

self.memory.clear()

self.assertEqual(self.memory.get_stats()['count'], 0)


if __name__ == '__main__':
unittest.main()