Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Feature: JointIterativeClosestPoint #344

Merged
merged 3 commits into from
Dec 14, 2013
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions registration/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -35,6 +35,7 @@ if(build)
include/pcl/${SUBSYS_NAME}/correspondence_types.h
include/pcl/${SUBSYS_NAME}/ia_ransac.h
include/pcl/${SUBSYS_NAME}/icp.h
include/pcl/${SUBSYS_NAME}/joint_icp.h
include/pcl/${SUBSYS_NAME}/icp_nl.h
include/pcl/${SUBSYS_NAME}/lum.h
include/pcl/${SUBSYS_NAME}/elch.h
Expand Down Expand Up @@ -90,6 +91,7 @@ if(build)
include/pcl/${SUBSYS_NAME}/impl/correspondence_types.hpp
include/pcl/${SUBSYS_NAME}/impl/ia_ransac.hpp
include/pcl/${SUBSYS_NAME}/impl/icp.hpp
include/pcl/${SUBSYS_NAME}/impl/joint_icp.hpp
include/pcl/${SUBSYS_NAME}/impl/icp_nl.hpp
include/pcl/${SUBSYS_NAME}/impl/elch.hpp
include/pcl/${SUBSYS_NAME}/impl/lum.hpp
Expand Down Expand Up @@ -134,6 +136,7 @@ if(build)
#src/pairwise_graph_registration.cpp
src/ia_ransac.cpp
src/icp.cpp
src/joint_icp.cpp
src/gicp.cpp
src/icp_nl.cpp
src/elch.cpp
Expand Down
259 changes: 259 additions & 0 deletions registration/include/pcl/registration/impl/joint_icp.hpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,259 @@
/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2010-2011, Willow Garage, Inc.
* Copyright (c) 2012-, Open Perception, Inc
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

No problem -- did you just mean adding a self-copyright (the "respective authors" section? I don't really care about that, but I can add if it's now required.) Otherwise they seem identical to me, modulo maybe some spacing issues. I just pushed a cut-and-pasted version to cover my bases

*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id$
*
*/

#ifndef PCL_REGISTRATION_IMPL_JOINT_ICP_HPP_
#define PCL_REGISTRATION_IMPL_JOINT_ICP_HPP_

#include <pcl/registration/boost.h>
#include <pcl/correspondence.h>
#include <pcl/console/print.h>


///////////////////////////////////////////////////////////////////////////////////////////
template <typename PointSource, typename PointTarget, typename Scalar> void
pcl::JointIterativeClosestPoint<PointSource, PointTarget, Scalar>::computeTransformation (
PointCloudSource &output, const Matrix4 &guess)
{
// Point clouds containing the correspondences of each point in <input, indices>
if (sources_.size () != targets_.size () || sources_.empty () || targets_.empty ())
{
PCL_ERROR ("[pcl::%s::computeTransformation] Must set InputSources and InputTargets to the same, nonzero size!\n",
getClassName ().c_str ());
return;
}
bool manual_correspondence_estimations_set = true;
if (correspondence_estimations_.empty ())
{
manual_correspondence_estimations_set = false;
correspondence_estimations_.resize (sources_.size ());
for (size_t i = 0; i < sources_.size (); i++)
{
correspondence_estimations_[i].reset (new pcl::registration::CorrespondenceEstimation<PointSource, PointTarget, Scalar>);
*correspondence_estimations_[i] = *correspondence_estimation_;
KdTreeReciprocalPtr src_tree (new KdTreeReciprocal);
KdTreePtr tgt_tree (new KdTree);
correspondence_estimations_[i]->setSearchMethodTarget (tgt_tree);
correspondence_estimations_[i]->setSearchMethodSource (src_tree);
}
}
if (correspondence_estimations_.size () != sources_.size ())
{
PCL_ERROR ("[pcl::%s::computeTransform] Must set CorrespondenceEstimations to be the same size as the joint\n",
getClassName ().c_str ());
return;
}
std::vector<PointCloudSourcePtr> inputs_transformed (sources_.size ());
for (size_t i = 0; i < sources_.size (); i++)
{
inputs_transformed[i].reset (new PointCloudSource);
}

nr_iterations_ = 0;
converged_ = false;

// Initialise final transformation to the guessed one
final_transformation_ = guess;

// Make a combined transformed input and output
std::vector<size_t> input_offsets (sources_.size ());
std::vector<size_t> target_offsets (targets_.size ());
PointCloudSourcePtr sources_combined (new PointCloudSource);
PointCloudSourcePtr inputs_transformed_combined (new PointCloudSource);
PointCloudTargetPtr targets_combined (new PointCloudTarget);
size_t input_offset = 0;
size_t target_offset = 0;
for (size_t i = 0; i < sources_.size (); i++)
{
// If the guessed transformation is non identity
if (guess != Matrix4::Identity ())
{
// Apply guessed transformation prior to search for neighbours
pcl::transformPointCloud (*sources_[i], *inputs_transformed[i], guess);
}
else
{
*inputs_transformed[i] = *sources_[i];
}
*sources_combined += *sources_[i];
*inputs_transformed_combined += *inputs_transformed[i];
*targets_combined += *targets_[i];
input_offsets[i] = input_offset;
target_offsets[i] = target_offset;
input_offset += inputs_transformed[i]->size ();
target_offset += targets_[i]->size ();
}



transformation_ = Matrix4::Identity ();
// Pass in the default target for the Correspondence Estimation/Rejection code
for (size_t i = 0; i < sources_.size (); i++)
{
correspondence_estimations_[i]->setInputTarget (targets_[i]);
}
// We should be doing something like this
// for (size_t i = 0; i < correspondence_rejectors_.size (); ++i)
// {
// correspondence_rejectors_[i]->setTargetCloud (target_);
// if (target_has_normals_)
// correspondence_rejectors_[i]->setTargetNormals (target_);
// }

convergence_criteria_->setMaximumIterations (max_iterations_);
convergence_criteria_->setRelativeMSE (euclidean_fitness_epsilon_);
convergence_criteria_->setTranslationThreshold (transformation_epsilon_);
convergence_criteria_->setRotationThreshold (1.0 - transformation_epsilon_);

// Repeat until convergence
std::vector<CorrespondencesPtr> partial_correspondences_ (sources_.size ());
for (size_t i = 0; i < sources_.size (); i++)
{
partial_correspondences_[i].reset (new pcl::Correspondences);
}

do
{
// Save the previously estimated transformation
previous_transformation_ = transformation_;

// Set the source each iteration, to ensure the dirty flag is updated
correspondences_->clear ();
for (size_t i = 0; i < correspondence_estimations_.size (); i++)
{
correspondence_estimations_[i]->setInputSource (inputs_transformed[i]);

// Estimate correspondences on each cloud pair separately
if (use_reciprocal_correspondence_)
{
correspondence_estimations_[i]->determineReciprocalCorrespondences (*partial_correspondences_[i], corr_dist_threshold_);
}
else
{
correspondence_estimations_[i]->determineCorrespondences (*partial_correspondences_[i], corr_dist_threshold_);
}
PCL_DEBUG ("[pcl::%s::computeTransformation] Found %d partial correspondences for cloud [%d]\n",
getClassName ().c_str (),
partial_correspondences_[i]->size (), i);
for (size_t j = 0; j < partial_correspondences_[i]->size (); j++)
{
pcl::Correspondence corr = partial_correspondences_[i]->at (j);
// Update the offsets to be for the combined clouds
corr.index_query += input_offsets[i];
corr.index_match += target_offsets[i];
correspondences_->push_back (corr);
}
}
PCL_DEBUG ("[pcl::%s::computeTransformation] Total correspondences: %d\n", getClassName ().c_str (), correspondences_->size ());

CorrespondencesPtr temp_correspondences (new Correspondences (*correspondences_));
for (size_t i = 0; i < correspondence_rejectors_.size (); ++i)
{
PCL_DEBUG ("Applying a correspondence rejector method: %s.\n", correspondence_rejectors_[i]->getClassName ().c_str ());
// We should be doing something like this
// correspondence_rejectors_[i]->setInputSource (input_transformed);
// if (source_has_normals_)
// correspondence_rejectors_[i]->setInputNormals (input_transformed);
correspondence_rejectors_[i]->setInputCorrespondences (temp_correspondences);
correspondence_rejectors_[i]->getCorrespondences (*correspondences_);
// Modify input for the next iteration
if (i < correspondence_rejectors_.size () - 1)
*temp_correspondences = *correspondences_;
}

size_t cnt = correspondences_->size ();
// Check whether we have enough correspondences
if (cnt < min_number_correspondences_)
{
PCL_ERROR ("[pcl::%s::computeTransformation] Not enough correspondences found. Relax your threshold parameters.\n", getClassName ().c_str ());
convergence_criteria_->setConvergenceState(pcl::registration::DefaultConvergenceCriteria<Scalar>::CONVERGENCE_CRITERIA_NO_CORRESPONDENCES);
converged_ = false;
break;
}

// Estimate the transform jointly, on a combined correspondence set
transformation_estimation_->estimateRigidTransformation (*inputs_transformed_combined, *targets_combined, *correspondences_, transformation_);

// Tranform the combined data
pcl::transformPointCloud (*inputs_transformed_combined, *inputs_transformed_combined, transformation_);
// And all its components
for (size_t i = 0; i < sources_.size (); i++)
{
pcl::transformPointCloud (*inputs_transformed[i], *inputs_transformed[i], transformation_);
}

// Obtain the final transformation
final_transformation_ = transformation_ * final_transformation_;

++nr_iterations_;

// Update the vizualization of icp convergence
//if (update_visualizer_ != 0)
// update_visualizer_(output, source_indices_good, *target_, target_indices_good );

converged_ = static_cast<bool> ((*convergence_criteria_));
}
while (!converged_);

PCL_DEBUG ("Transformation is:\n\t%5f\t%5f\t%5f\t%5f\n\t%5f\t%5f\t%5f\t%5f\n\t%5f\t%5f\t%5f\t%5f\n\t%5f\t%5f\t%5f\t%5f\n",
final_transformation_ (0, 0), final_transformation_ (0, 1), final_transformation_ (0, 2), final_transformation_ (0, 3),
final_transformation_ (1, 0), final_transformation_ (1, 1), final_transformation_ (1, 2), final_transformation_ (1, 3),
final_transformation_ (2, 0), final_transformation_ (2, 1), final_transformation_ (2, 2), final_transformation_ (2, 3),
final_transformation_ (3, 0), final_transformation_ (3, 1), final_transformation_ (3, 2), final_transformation_ (3, 3));

// For fitness checks, etc, we'll use an aggregated cloud for now (should be evaluating independently for correctness, but this requires propagating a few virtual methods from Registration)
IterativeClosestPoint<PointSource, PointTarget, Scalar>::setInputSource (sources_combined);
IterativeClosestPoint<PointSource, PointTarget, Scalar>::setInputTarget (targets_combined);

// If we automatically set the correspondence estimators, we should clear them now
if (!manual_correspondence_estimations_set)
{
correspondence_estimations_.clear ();
}


// By definition, this method will return an empty cloud (for compliance with the ICP API).
// We can figure out a better solution, if necessary.
output = PointCloudSource ();
}


#endif /* PCL_REGISTRATION_IMPL_JOINT_ICP_HPP_ */


Loading