Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
22 commits
Select commit Hold shift + click to select a range
ef757f9
Add spatialhash class
fluidnumerics-joe Aug 1, 2025
ffe3fc2
[#2199] Add get_spatial_hash method to xgrid class
fluidnumerics-joe Aug 1, 2025
7756dba
[#2119] Add spatial hash init test and resolve init bugs
fluidnumerics-joe Aug 1, 2025
83fdf5f
Fix units to degrees for spatialhash grid
fluidnumerics-joe Aug 4, 2025
37b7210
Switch to spatialhash query for initial guess
fluidnumerics-joe Aug 4, 2025
df788b4
Resolve correctness bug
fluidnumerics-joe Aug 5, 2025
fe54538
Remove global_grid option; hashgrid bounds taken from parent grid bou…
fluidnumerics-joe Aug 6, 2025
ca6e266
Remove unneccesary commented out imports
fluidnumerics-joe Aug 6, 2025
1c3958c
Remove old comments/debug statements
fluidnumerics-joe Aug 6, 2025
27b16ee
Remove global_grid arg to spatialhash
fluidnumerics-joe Aug 11, 2025
88e416b
Remove debug statement
fluidnumerics-joe Aug 11, 2025
9622349
Prefer barycentric_coordinates implementation in parcels.spatialhash
fluidnumerics-joe Aug 11, 2025
3e2d18e
Move xbound,ybound calculation to spatialhash.__init__
fluidnumerics-joe Aug 12, 2025
3956f07
Add note on circular import for delay in asserting grid is Xgrid
fluidnumerics-joe Aug 12, 2025
8e12611
Change arg ordering to (y,x), consistent with the rest of parcels
fluidnumerics-joe Aug 12, 2025
ed9244b
Merge branch 'v4-dev' into 2119-spatial-hashing
fluidnumerics-joe Aug 12, 2025
120efff
Remove commented out code
fluidnumerics-joe Aug 12, 2025
eddb351
Update function name to be consistent with (j,i) ordering
fluidnumerics-joe Aug 12, 2025
723cb47
Prefix all internal api functions with "_"
fluidnumerics-joe Aug 12, 2025
4a01f43
Fix docstring for _hash_cell_size
fluidnumerics-joe Aug 12, 2025
7a77039
Conditionally wrap coordinates if mesh is spherical
fluidnumerics-joe Aug 12, 2025
dddeefe
Adjust docstring for _hash_index2d to something a bit more accurate
fluidnumerics-joe Aug 12, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 3 additions & 6 deletions parcels/_index_search.py
Original file line number Diff line number Diff line change
Expand Up @@ -275,11 +275,9 @@ def _search_indices_curvilinear_2d(
grid: XGrid, y: float, x: float, yi_guess: int | None = None, xi_guess: int | None = None
):
yi, xi = yi_guess, xi_guess
if yi is None:
yi = int(grid.ydim / 2) - 1

if xi is None:
xi = int(grid.xdim / 2) - 1
if yi is None or xi is None:
faces = grid.get_spatial_hash().query(np.column_stack((y, x)))
yi, xi = faces[0]

xsi = eta = -1.0
invA = np.array(
Expand Down Expand Up @@ -350,7 +348,6 @@ def _search_indices_curvilinear_2d(

if not ((0 <= xsi <= 1) and (0 <= eta <= 1)):
_raise_field_sampling_error(y, x)

return (yi, eta, xi, xsi)


Expand Down
310 changes: 310 additions & 0 deletions parcels/spatialhash.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,310 @@
import numpy as np


class SpatialHash:
"""Custom data structure that is used for performing grid searches using Spatial Hashing. This class constructs an overlying
uniformly spaced rectilinear grid, called the "hash grid" on top parcels.xgrid.XGrid. It is particularly useful for grid searching
on curvilinear grids. Faces in the Xgrid are related to the cells in the hash grid by determining the hash cells the bounding box
of the unstructured face cells overlap with.

Parameters
----------
grid : parcels.xgrid.XGrid
Source grid used to construct the hash grid and hash table
reconstruct : bool, default=False
If true, reconstructs the spatial hash

Note
----
Does not currently support queries on periodic elements.
"""

def __init__(
self,
grid,
reconstruct=False,
):
# TODO : Enforce grid to be an instance of parcels.xgrid.XGrid
# Currently, this is not done due to circular import with parcels.xgrid

self._source_grid = grid
self.reconstruct = reconstruct

# Hash grid size
self._dh = self._hash_cell_size()

# Lower left corner of the hash grid
lon_min = self._source_grid.lon.min()
lat_min = self._source_grid.lat.min()
lon_max = self._source_grid.lon.max()
lat_max = self._source_grid.lat.max()

# Get corner vertices of each face
self._xbound = np.stack(
(
self._source_grid.lon[:-1, :-1],
self._source_grid.lon[:-1, 1:],
self._source_grid.lon[1:, 1:],
self._source_grid.lon[1:, :-1],
),
axis=-1,
)
self._ybound = np.stack(
(
self._source_grid.lat[:-1, :-1],
self._source_grid.lat[:-1, 1:],
self._source_grid.lat[1:, 1:],
self._source_grid.lat[1:, :-1],
),
axis=-1,
)

self._xmin = lon_min - self._dh
self._ymin = lat_min - self._dh
self._xmax = lon_max + self._dh
self._ymax = lat_max + self._dh

# Number of x points in the hash grid; used for
# array flattening
Lx = self._xmax - self._xmin
Ly = self._ymax - self._ymin
self._nx = int(np.ceil(Lx / self._dh))
self._ny = int(np.ceil(Ly / self._dh))

# Generate the mapping from the hash indices to unstructured grid elements
self._face_hash_table = None
self._face_hash_table = self._initialize_face_hash_table()

def _hash_cell_size(self):
"""Computes the size of the hash cells from the source grid.
The hash cell size is set to 1/2 of the square root of the median cell area
"""
return np.sqrt(np.median(_planar_quad_area(self._source_grid.lat, self._source_grid.lon))) * 0.5

def _hash_index2d(self, coords):
"""Computes the 2-d hash index (i,j) for the location (x,y), where x and y is the same units
as the source grid coordinates
"""
# Wrap longitude to [-180, 180]
if self._source_grid.mesh == "spherical":
lon = (coords[:, 1] + 180.0) % (360.0) - 180.0
else:
lon = coords[:, 1]
i = ((lon - self._xmin) / self._dh).astype(np.int32)
j = ((coords[:, 0] - self._ymin) / self._dh).astype(np.int32)
return j, i

def _hash_index(self, coords):
"""Computes the flattened hash index for the location (x,y), where x and y are given in spherical
coordinates (in degrees). The single dimensioned hash index orders the flat index with all of the
i-points first and then all the j-points.
"""
j, i = self._hash_index2d(coords)
return i + self._nx * j

def _grid_ji_for_eid(self, eid):
"""Returns the (i,j) grid coordinates for the given element id (eid)"""
j = eid // (self._source_grid.xdim)
i = eid - j * (self._source_grid.xdim)
return j, i

def _initialize_face_hash_table(self):
"""Create a mapping that relates unstructured grid faces to hash indices by determining
which faces overlap with which hash cells
"""
if self._face_hash_table is None or self.reconstruct:
index_to_face = [[] for i in range(self._nx * self._ny)]
# Get the bounds of each curvilinear faces
lat_bounds, lon_bounds = _curvilinear_grid_facebounds(
self._source_grid.lat,
self._source_grid.lon,
)
coords = np.stack(
(
lat_bounds[:, :, 0].flatten(),
lon_bounds[:, :, 0].flatten(),
),
axis=-1,
)
yi1, xi1 = self._hash_index2d(coords)
coords = np.stack(
(
lat_bounds[:, :, 1].flatten(),
lon_bounds[:, :, 1].flatten(),
),
axis=-1,
)
yi2, xi2 = self._hash_index2d(coords)
nface = (self._source_grid.xdim) * (self._source_grid.ydim)
for eid in range(nface):
for j in range(yi1[eid], yi2[eid] + 1):
if xi1[eid] <= xi2[eid]:
# Normal case, no wrap
for i in range(xi1[eid], xi2[eid] + 1):
index_to_face[(i % self._nx) + self._nx * j].append(eid)
else:
# Wrap-around case
for i in range(xi1[eid], self._nx):
index_to_face[(i % self._nx) + self._nx * j].append(eid)
for i in range(0, xi2[eid] + 1):
index_to_face[(i % self._nx) + self._nx * j].append(eid)
return index_to_face

def query(
self,
coords,
tol=1e-6,
):
"""Queries the hash table.

Parameters
----------
coords : array_like
coordinate pairs in degrees (lat, lon) to query.


Returns
-------
faces : ndarray of shape (coords.shape[0]), dtype=np.int32
Face id's in the self._source_grid where each coords element is found. When a coords element is not found, the
corresponding array entry in faces is set to -1.
"""
num_coords = coords.shape[0]

# Preallocate results
faces = np.full((num_coords, 2), -1, dtype=np.int32)

# Get the list of candidate faces for each coordinate
candidate_faces = [self._face_hash_table[pid] for pid in self._hash_index(coords)]

for i, (coord, candidates) in enumerate(zip(coords, candidate_faces, strict=False)):
for face_id in candidates:
yi, xi = self._grid_ji_for_eid(face_id)
nodes = np.stack(
(
self._ybound[yi, xi, :],
self._xbound[yi, xi, :],
),
axis=-1,
)

bcoord = np.asarray(_barycentric_coordinates(nodes, coord))
err = abs(np.dot(bcoord, nodes[:, 0]) - coord[0]) + abs(np.dot(bcoord, nodes[:, 1]) - coord[1])
if (bcoord >= 0).all() and err < tol:
faces[i, :] = [yi, xi]
break

return faces


def _triangle_area(A, B, C):
"""Compute the area of a triangle given by three points."""
d1 = B - A
d2 = C - A
d3 = np.cross(d1, d2)
return 0.5 * np.linalg.norm(d3)


def _barycentric_coordinates(nodes, point, min_area=1e-8):
"""
Compute the barycentric coordinates of a point P inside a convex polygon using area-based weights.
So that this method generalizes to n-sided polygons, we use the Waschpress points as the generalized
barycentric coordinates, which is only valid for convex polygons.

Parameters
----------
nodes : numpy.ndarray
Spherical coordinates (lat,lon) of each corner node of a face
point : numpy.ndarray
Spherical coordinates (lat,lon) of the point

Returns
-------
numpy.ndarray
Barycentric coordinates corresponding to each vertex.

"""
n = len(nodes)
sum_wi = 0
w = []

for i in range(0, n):
vim1 = nodes[i - 1]
vi = nodes[i]
vi1 = nodes[(i + 1) % n]
a0 = _triangle_area(vim1, vi, vi1)
a1 = max(_triangle_area(point, vim1, vi), min_area)
a2 = max(_triangle_area(point, vi, vi1), min_area)
sum_wi += a0 / (a1 * a2)
w.append(a0 / (a1 * a2))
barycentric_coords = [w_i / sum_wi for w_i in w]

return barycentric_coords


def _planar_quad_area(lat, lon):
"""Computes the area of each quadrilateral face in a curvilinear grid.
The lon and lat arrays are assumed to be 2D arrays of points with dimensions (n_y, n_x).
The area is computed using the Shoelace formula.
This method is only used during hashgrid construction to determine the size of the hash cells.

Parameters
----------
lon : np.ndarray
2D array of shape (n_y, n_x) containing the longitude of each corner node of the curvilinear grid.
lat : np.ndarray
2D array of shape (n_y, n_x) containing the latitude of each corner node of the curvilinear grid.

Returns
-------
area : np.ndarray
2D array of shape (n_y-1, n_x-1) containing the area of each quadrilateral face in the curvilinear grid.
"""
x0 = lon[:-1, :-1]
x1 = lon[:-1, 1:]
x2 = lon[1:, 1:]
x3 = lon[1:, :-1]

y0 = lat[:-1, :-1]
y1 = lat[:-1, 1:]
y2 = lat[1:, 1:]
y3 = lat[1:, :-1]

# Shoelace formula: 0.5 * |sum(x_i*y_{i+1} - x_{i+1}*y_i)|
area = 0.5 * np.abs(x0 * y1 + x1 * y2 + x2 * y3 + x3 * y0 - y0 * x1 - y1 * x2 - y2 * x3 - y3 * x0)
return area


def _curvilinear_grid_facebounds(lat, lon):
"""Computes the bounds of each curvilinear face in the grid.
The lon and lat arrays are assumed to be 2D arrays of points with dimensions (n_y, n_x).
The bounds are for faces whose corner node vertices are defined by lat,lon.
Face(yi,xi) is surrounding by points (yi,xi), (yi,xi+1), (yi+1,xi+1), (yi+1,xi).
This method is only used during hashgrid construction to determine which curvilinear
faces overlap with which hash cells.

Parameters
----------
lon : np.ndarray
2D array of shape (n_y, n_x) containing the longitude of each corner node of the curvilinear grid.
lat : np.ndarray
2D array of shape (n_y, n_x) containing the latitude of each corner node of the curvilinear grid.

Returns
-------
xbounds : np.ndarray
Array of shape (n_y-1, n_x-1, 2) containing the bounds of each face in the x-direction.
ybounds : np.ndarray
Array of shape (n_y-1, n_x-1, 2) containing the bounds of each face in the y-direction.
"""
xf = np.stack((lon[:-1, :-1], lon[:-1, 1:], lon[1:, 1:], lon[1:, :-1]), axis=-1)
xf_low = xf.min(axis=-1)
xf_high = xf.max(axis=-1)
xbounds = np.stack([xf_low, xf_high], axis=-1)

yf = np.stack((lat[:-1, :-1], lat[:-1, 1:], lat[1:, 1:], lat[1:, :-1]), axis=-1)
yf_low = yf.min(axis=-1)
yf_high = yf.max(axis=-1)
ybounds = np.stack([yf_low, yf_high], axis=-1)

return ybounds, xbounds
Loading
Loading