Skip to content

[paddle.linalg.qr] Add the Qr Operator #35742

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 21 commits into from
Oct 19, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions cmake/operators.cmake
Original file line number Diff line number Diff line change
Expand Up @@ -185,6 +185,7 @@ function(op_library TARGET)
list(REMOVE_ITEM hip_srcs "cholesky_op.cu")
list(REMOVE_ITEM hip_srcs "matrix_rank_op.cu")
list(REMOVE_ITEM hip_srcs "svd_op.cu")
list(REMOVE_ITEM hip_srcs "qr_op.cu")
list(REMOVE_ITEM hip_srcs "eigh_op.cu")
list(REMOVE_ITEM hip_srcs "multinomial_op.cu")
list(REMOVE_ITEM hip_srcs "decode_jpeg_op.cu")
Expand Down
152 changes: 152 additions & 0 deletions paddle/fluid/operators/qr_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,152 @@
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/qr_op.h"
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/ddim.h"
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

namespace paddle {
namespace operators {
using DDim = framework::DDim;

class QrOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;

void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "qr");
OP_INOUT_CHECK(ctx->HasOutput("Q"), "Output", "Q", "qr");
OP_INOUT_CHECK(ctx->HasOutput("R"), "Output", "R", "qr");

auto x_dims = ctx->GetInputDim("X");
int x_rank = x_dims.size();
PADDLE_ENFORCE_GE(x_dims.size(), 2,
platform::errors::InvalidArgument(
"the rank of input must greater than 2"));
bool compute_q;
bool reduced_mode;
int m = x_dims[x_rank - 2];
int n = x_dims[x_rank - 1];
int min_mn = std::min(m, n);
std::string mode = ctx->Attrs().Get<std::string>("mode");
std::tie(compute_q, reduced_mode) = _parse_qr_mode(mode);

if (compute_q) {
int k = reduced_mode ? min_mn : m;
auto q_dims_vec = framework::vectorize(x_dims);
q_dims_vec[q_dims_vec.size() - 1] = k;
ctx->SetOutputDim("Q", framework::make_ddim(q_dims_vec));
} else {
ctx->SetOutputDim("Q", framework::make_ddim({0}));
}

int k = reduced_mode ? min_mn : m;
auto r_dims_vec = framework::vectorize(x_dims);
r_dims_vec[r_dims_vec.size() - 2] = k;
r_dims_vec[r_dims_vec.size() - 1] = n;
ctx->SetOutputDim("R", framework::make_ddim(r_dims_vec));

ctx->ShareLoD("X", /*->*/ "Q");
ctx->ShareLoD("X", /*->*/ "R");
}
};

class QrOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "(Tensor), The input tensor of qr op.");
AddOutput("Q", "(Tensor), The output Q tensor of qr op.");
AddOutput("R", "(Tensor), The output R tensor of qr op.");
AddAttr<std::string>(
"mode",
"(string, default \"reduced\"). "
"If mode is \"reduced\", Qr op will return reduced Q and R matrices. "
"If mode is \"complete\", Qr op will return complete Q and R matrices. "
"If mode is \"r\", Qr op will only return reduced R matrix.")
.SetDefault("reduced");
AddComment(R"DOC(
Qr Operator.

This operator is used to perform QR operation for batched matrics $X$.
$$Q, R = qr(X)$$

)DOC");
}
};

class QrGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;

void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Q")), "Input",
"Q@Grad", "QrGrad");
OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("R")), "Input",
"R@Grad", "QrGrad");
OP_INOUT_CHECK(ctx->HasInput("Q"), "Input", "Q", "QrGrad");
OP_INOUT_CHECK(ctx->HasInput("R"), "Input", "R", "QrGrad");
OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output",
"X@Grad", "QrGrad");

auto x_dims = ctx->GetInputDim(("X"));
ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
}

protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
auto dtype = OperatorWithKernel::IndicateVarDataType(ctx, "X");
return framework::OpKernelType(dtype, ctx.GetPlace());
}
};

template <typename T>
class QrGradMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

void Apply(GradOpPtr<T> retv) const override {
retv->SetType("qr_grad");
retv->SetInput(framework::GradVarName("Q"), this->OutputGrad("Q"));
retv->SetInput(framework::GradVarName("R"), this->OutputGrad("R"));
retv->SetInput("Q", this->Output("Q"));
retv->SetInput("R", this->Output("R"));
retv->SetInput("X", this->Input("X"));
retv->SetAttrMap(this->Attrs());
retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
}
};

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;

REGISTER_OPERATOR(qr, ops::QrOp, ops::QrOpMaker,
ops::QrGradMaker<paddle::framework::OpDesc>,
ops::QrGradMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(qr_grad, ops::QrGradOp);

REGISTER_OP_CPU_KERNEL(qr, ops::QrCPUKernel<float>, ops::QrCPUKernel<double>);

REGISTER_OP_CPU_KERNEL(
qr_grad, ops::QrGradKernel<paddle::platform::CPUDeviceContext, float>,
ops::QrGradKernel<paddle::platform::CPUDeviceContext, double>);
Loading