Skip to content

Commit

Permalink
Avoid in-place ops during logging result updates (#11401)
Browse files Browse the repository at this point in the history
Co-authored-by: rohitgr7 <rohitgr1998@gmail.com>
  • Loading branch information
carmocca and rohitgr7 authored Jan 12, 2022
1 parent 221091a commit f5bbc2c
Show file tree
Hide file tree
Showing 3 changed files with 28 additions and 5 deletions.
3 changes: 3 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -414,6 +414,9 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
- Fixed wrong typehint for `Trainer.lightning_optimizers` ([#11155](https://github.com/PyTorchLightning/pytorch-lightning/pull/11155))


- Fixed type promotion when tensors of higher category than float are logged ([#11401](https://github.com/PyTorchLightning/pytorch-lightning/pull/11401))


- Fixed the lr-scheduler state not being dumped to checkpoint when using the deepspeed strategy ([#11307](https://github.com/PyTorchLightning/pytorch-lightning/pull/11307))


Expand Down
10 changes: 5 additions & 5 deletions pytorch_lightning/trainer/connectors/logger_connector/result.py
Original file line number Diff line number Diff line change
Expand Up @@ -216,6 +216,7 @@ def __init__(self, metadata: _Metadata, is_tensor: bool) -> None:
# do not set a dtype in case the default dtype was changed
self.add_state("value", torch.tensor(default), dist_reduce_fx=torch.sum)
if self.meta.is_mean_reduction:
self.cumulated_batch_size: torch.Tensor
self.add_state("cumulated_batch_size", torch.tensor(0), dist_reduce_fx=torch.sum)
# this is defined here only because upstream is missing the type annotation
self._forward_cache: Optional[Any] = None
Expand All @@ -241,14 +242,13 @@ def update(self, value: _IN_METRIC, batch_size: int) -> None: # type: ignore[ov

# perform accumulation with reduction
if self.meta.is_mean_reduction:
self.value += value.mean() * batch_size
# `Metric.add_state` does not work well with mypy, mypy doesn't know this is a `Tensor`
# we could add an assertion, but this is a hot code path
self.cumulated_batch_size += batch_size # type: ignore[operator]
# do not use `+=` as it doesn't do type promotion
self.value = self.value + value.mean() * batch_size
self.cumulated_batch_size = self.cumulated_batch_size + batch_size
elif self.meta.is_max_reduction or self.meta.is_min_reduction:
self.value = self.meta.reduce_fx(self.value, value.mean())
elif self.meta.is_sum_reduction:
self.value += value.mean()
self.value = self.value + value.mean()
else:
value = cast(Metric, value)
self.value = value
Expand Down
20 changes: 20 additions & 0 deletions tests/core/test_metric_result_integration.py
Original file line number Diff line number Diff line change
Expand Up @@ -590,6 +590,26 @@ def test_metric_result_respects_dtype(floating_dtype):
torch.set_default_dtype(torch.float)


@pytest.mark.parametrize("reduce_fx", ("mean", sum))
def test_metric_result_dtype_promotion(reduce_fx):
metadata = _Metadata("foo", "bar", reduce_fx=reduce_fx)
metadata.sync = _Sync()
rm = _ResultMetric(metadata, is_tensor=True)
assert rm.value.dtype == torch.float

# log a double
rm.update(torch.tensor(0, dtype=torch.double), 1)
# `rm.value.dtype` is promoted
assert rm.value.dtype == torch.double
# log a float
rm.update(torch.tensor(0, dtype=torch.float), 1)
# the previous dtype stays
assert rm.value.dtype == torch.double

total = rm.compute()
assert total.dtype == torch.double


@pytest.mark.parametrize(["reduce_fx", "expected"], [(max, -2), (min, 2)])
def test_result_metric_max_min(reduce_fx, expected):
metadata = _Metadata("foo", "bar", reduce_fx=reduce_fx)
Expand Down

0 comments on commit f5bbc2c

Please sign in to comment.