Skip to content

IMPLabUniPr/mmdetection

 
 

Repository files navigation

Recursively Refined R-CNN: Self RoI Re-Balancing on Instance Segmentation

Installation

See MMDetection and MMCV official pages to know the installation procedure for mmdetection and mmcv libraries.

Our code has been designed with the following version of the libraries:

Note: In order to run R3-CNN training, it is required to install our mmcv library version (not the official one!).

Models

Most important files.

Name Description
FCC BBox Head It contains our brand new R3-CNN bbox head with FCC Lighter v1 and v2, corresponding to Fig. 4(b, c).
FCC BBox Head It contains our brand new R3-CNN bbox head with FCC Advanced v1 and v2, corresponding to Fig. 4(d, e).
Mask Head It contains R3-CNN mask head.
FCC Mask IoU Head It contains our brand new Mask IoU segmentation head for R3-CNN model with FCC Lighter v1 and v2, corresponding to Fig. 4(b, c).
FCC Mask IoU Head It contains our brand new Mask IoU segmentation head for R3-CNN model with FCC Advanced v1 and v2, corresponding to Fig. 4(d, e).
R3-CNN RoI Head It contains R3-CNN RoI Head whose task is to manage bbox, segmentation and Mask IoU heads.

Experiments

The following configuration files have been used to run each experiment:

Table 2

Row Model
1 Mask (1x)
2 Mask (3x)
3 HTC
:--: :----:
4 R3-CNN (naive)
5 R3-CNN (deeper)

Table 3

Row Model Lt H Alt.
1 HTC 3 3 abc
:--: :--: :----: :--: :--:
2 R3-CNN 2 2 ab
3 R3-CNN 3 2 abb
4 R3-CNN 3 2 aab
5 R3-CNN 3 2 aba
6 R3-CNN 4 2 aabb
7 R3-CNN 4 2 abab
8 R3-CNN 5 2 aabbb

Table 4

Row Model Lt H L2C NLb NLa
1 HTC 3 3
:--: :----: :--: :--: :----: :--: :--:
2 R3-CNN 3 1
3 R3-CNN 3 1 7x7
4 R3-CNN 3 1 7x3 -> 3x7
5 R3-CNN 3 1 7x7 v
6 R3-CNN 3 1 7x3 -> 3x7 v
7 R3-CNN 3 1 7x7 v v
:--: :----: :--: :--: :----: :--: :--:
8 R3-CNN 4 2
9 R3-CNN 4 2 7x7
10 R3-CNN 4 2 7x3 -> 3x7
11 R3-CNN 4 2 7x7 v
12 R3-CNN 4 2 7x3 -> 3x7 v

Table 5

| Row | Model | Lt | H | MIoU | L2C | NLb | NLa | :--: | :----: | :--: | :--: | :----: | :--: | :--: | | 1 | HTC | 3 | 3 | | | | | | :--: | :----: | :--: | :--: | :----: | :--: | :--: | :--: | | 2 | R3-CNN | 3 | 1 | | | | | | 3 | R3-CNN | 3 | 1 | v | | | | | 4 | R3-CNN | 3 | 1 | v | 7x7 | | | | 5 | R3-CNN | 3 | 1 | v | 7x3 -> 3x7 | | | | 6 | R3-CNN | 3 | 1 | v | 7x7 | v | | | 7 | R3-CNN | 3 | 1 | v | 7x7 | v | v | | :--: | :----: | :--: | :--: | :----: | :--: | :--: | :--: | | 8 | R3-CNN | 4 | 2 | | | | | | 9 | R3-CNN | 4 | 2 | v | | | | | 10 | R3-CNN | 4 | 2 | v | 7x7 | | | | 11 | R3-CNN | 4 | 2 | v | 7x7 | v | | | 12 | R3-CNN | 4 | 2 | v | 7x7 | v | v |

Table 6

Model
baseline
conv 3x3
conv 5x5
conv 7x7
conv 7x3 -> 3x7
Non-local 1x1
Non-local 3x3

Table 7

Model
baseline
conv 3x3
conv 5x5
conv 7x7
conv 7x3 -> 3x7
Non-local 1x1
Non-local 3x3

Table 8

Model
baseline
GRoIE

Table 9

Row Model Backbone
1 Mask r50-FPN
2 HTC r50-FPN
3 SBR-CNN r50-FPN
:--: :----: :------:
6 GC-Net r50-FPN
7 HTC + GC-Net r50-FPN
8 SBR-CNN + GC-Net r50-FPN
:--: :----: :------:
9 DCN r50-FPN
10 HTC + DCN r50-FPN
11 SBR-CNN + DCN r50-FPN

About

Open MMLab Detection Toolbox and Benchmark

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 99.9%
  • Other 0.1%