forked from hachreak/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 1
/
r3_cnn-exp_5-row_6-fcc2_2.py
53 lines (53 loc) · 1.89 KB
/
r3_cnn-exp_5-row_6-fcc2_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
_base_ = './r3_cnn-exp_5-row_6.py'
model = dict(
roi_head=dict(
bbox_head=[
dict(
type='Shared2FCC2BBoxHead',
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=80,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0.0, 0.0, 0.0, 0.0],
target_stds=[0.1, 0.1, 0.2, 0.2]),
reg_class_agnostic=True,
nl_stages=(False, False),
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
loss_weight=1.0),
convwise=(
{'kernel_size': (7, 3), 'padding': 1},
{'kernel_size': (3, 7), 'padding': 3},
)
),
dict(
type='Shared2FCC2BBoxHead',
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=80,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0.0, 0.0, 0.0, 0.0],
target_stds=[0.1, 0.1, 0.2, 0.2]),
reg_class_agnostic=True,
nl_stages=(False, False),
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
loss_weight=1.0),
convwise=(
{'kernel_size': (7, 3), 'padding': 1},
{'kernel_size': (3, 7), 'padding': 3},
)
)
],
)
)