Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: support time() and related functions in PromQL #2854

Merged
merged 9 commits into from
Dec 4, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
94 changes: 68 additions & 26 deletions src/promql/src/extension_plan/empty_metric.rs
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@ use std::pin::Pin;
use std::sync::Arc;
use std::task::{Context, Poll};

use datafusion::arrow::array::ArrayRef;
use datafusion::arrow::datatypes::{DataType, Schema as ArrowSchema, TimeUnit};
use datafusion::common::{DFField, DFSchema, DFSchemaRef, Result as DataFusionResult, Statistics};
use datafusion::error::DataFusionError;
Expand Down Expand Up @@ -48,7 +49,7 @@ pub struct EmptyMetric {
start: Millisecond,
end: Millisecond,
interval: Millisecond,
expr: Expr,
expr: Option<Expr>,
/// Schema that only contains the time index column.
/// This is for intermediate result only.
time_index_schema: DFSchemaRef,
Expand All @@ -63,17 +64,20 @@ impl EmptyMetric {
interval: Millisecond,
time_index_column_name: String,
field_column_name: String,
field_expr: Expr,
field_expr: Option<Expr>,
) -> DataFusionResult<Self> {
let ts_only_schema = build_ts_only_schema(&time_index_column_name);
let field_data_type = field_expr.get_type(&ts_only_schema)?;
let schema = Arc::new(DFSchema::new_with_metadata(
vec![
ts_only_schema.field(0).clone(),
DFField::new(Some(""), &field_column_name, field_data_type, true),
],
HashMap::new(),
)?);
let mut fields = vec![ts_only_schema.field(0).clone()];
if let Some(field_expr) = &field_expr {
let field_data_type = field_expr.get_type(&ts_only_schema)?;
fields.push(DFField::new(
Some(""),
&field_column_name,
field_data_type,
true,
));
}
let schema = Arc::new(DFSchema::new_with_metadata(fields, HashMap::new())?);

Ok(Self {
start,
Expand All @@ -94,12 +98,18 @@ impl EmptyMetric {
session_state: &SessionState,
physical_planner: &dyn PhysicalPlanner,
) -> DataFusionResult<Arc<dyn ExecutionPlan>> {
let physical_expr = physical_planner.create_physical_expr(
&self.expr,
&self.result_schema,
&ArrowSchema::from(self.result_schema.as_ref()),
session_state,
)?;
let physical_expr = self
.expr
.as_ref()
.map(|expr| {
physical_planner.create_physical_expr(
expr,
&self.result_schema,
&ArrowSchema::from(self.result_schema.as_ref()),
session_state,
)
})
.transpose()?;

Ok(Arc::new(EmptyMetricExec {
start: self.start,
Expand Down Expand Up @@ -153,7 +163,7 @@ pub struct EmptyMetricExec {
time_index_schema: SchemaRef,
/// Schema of the output record batch
result_schema: SchemaRef,
expr: PhysicalExprRef,
expr: Option<PhysicalExprRef>,

metric: ExecutionPlanMetricsSet,
}
Expand Down Expand Up @@ -241,7 +251,7 @@ pub struct EmptyMetricStream {
start: Millisecond,
end: Millisecond,
interval: Millisecond,
expr: PhysicalExprRef,
expr: Option<PhysicalExprRef>,
/// This stream only generate one record batch at the first poll
is_first_poll: bool,
/// Schema that only contains the time index column.
Expand Down Expand Up @@ -272,20 +282,24 @@ impl Stream for EmptyMetricStream {
.step_by(self.interval as _)
.collect::<Vec<_>>();
let time_array = Arc::new(TimestampMillisecondArray::from(time_array));
let num_rows = time_array.len();
let input_record_batch =
RecordBatch::try_new(self.time_index_schema.clone(), vec![time_array.clone()])
.map_err(DataFusionError::ArrowError)?;
let mut result_arrays: Vec<ArrayRef> = vec![time_array];

// evaluate the field expr and get the result
let field_array = self
.expr
.evaluate(&input_record_batch)?
.into_array(time_array.len());
if let Some(field_expr) = &self.expr {
result_arrays.push(
field_expr
.evaluate(&input_record_batch)?
.into_array(num_rows),
);
}

// assemble the output record batch
let batch =
RecordBatch::try_new(self.result_schema.clone(), vec![time_array, field_array])
.map_err(DataFusionError::ArrowError);
let batch = RecordBatch::try_new(self.result_schema.clone(), result_arrays)
.map_err(DataFusionError::ArrowError);

Poll::Ready(Some(batch))
} else {
Expand Down Expand Up @@ -344,7 +358,7 @@ mod test {
interval,
time_column_name,
field_column_name,
time_expr,
Some(time_expr),
)
.unwrap();
let empty_metric_exec = empty_metric
Expand Down Expand Up @@ -455,4 +469,32 @@ mod test {
)
.await
}

#[tokio::test]
async fn no_field_expr() {
let session_context = SessionContext::default();
let df_default_physical_planner = DefaultPhysicalPlanner::default();
let empty_metric =
EmptyMetric::new(0, 200, 1000, "time".to_string(), "value".to_string(), None).unwrap();
let empty_metric_exec = empty_metric
.to_execution_plan(&session_context.state(), &df_default_physical_planner)
.unwrap();

let result =
datafusion::physical_plan::collect(empty_metric_exec, session_context.task_ctx())
.await
.unwrap();
let result_literal = datatypes::arrow::util::pretty::pretty_format_batches(&result)
.unwrap()
.to_string();

let expected = String::from(
"+---------------------+\
\n| time |\
\n+---------------------+\
\n| 1970-01-01T00:00:00 |\
\n+---------------------+",
);
assert_eq!(result_literal, expected);
}
}
Loading
Loading