Skip to content

Conversation

@dependabot
Copy link

@dependabot dependabot bot commented on behalf of github Nov 2, 2023

Bumps urllib3 from 2.0.4 to 2.0.7.

Release notes

Sourced from urllib3's releases.

2.0.7

  • Made body stripped from HTTP requests changing the request method to GET after HTTP 303 "See Other" redirect responses. (GHSA-g4mx-q9vg-27p4)

2.0.6

  • Added the Cookie header to the list of headers to strip from requests when redirecting to a different host. As before, different headers can be set via Retry.remove_headers_on_redirect. (GHSA-v845-jxx5-vc9f)

2.0.5

  • Allowed pyOpenSSL third-party module without any deprecation warning. #3126
  • Fixed default blocksize of HTTPConnection classes to match high-level classes. Previously was 8KiB, now 16KiB. #3066
Changelog

Sourced from urllib3's changelog.

2.0.7 (2023-10-17)

  • Made body stripped from HTTP requests changing the request method to GET after HTTP 303 "See Other" redirect responses.

2.0.6 (2023-10-02)

  • Added the Cookie header to the list of headers to strip from requests when redirecting to a different host. As before, different headers can be set via Retry.remove_headers_on_redirect.

2.0.5 (2023-09-20)

  • Allowed pyOpenSSL third-party module without any deprecation warning. ([#3126](https://github.com/urllib3/urllib3/issues/3126) <https://github.com/urllib3/urllib3/issues/3126>__)
  • Fixed default blocksize of HTTPConnection classes to match high-level classes. Previously was 8KiB, now 16KiB. ([#3066](https://github.com/urllib3/urllib3/issues/3066) <https://github.com/urllib3/urllib3/issues/3066>__)
Commits

Dependabot compatibility score

Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


Dependabot commands and options

You can trigger Dependabot actions by commenting on this PR:

  • @dependabot rebase will rebase this PR
  • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
  • @dependabot merge will merge this PR after your CI passes on it
  • @dependabot squash and merge will squash and merge this PR after your CI passes on it
  • @dependabot cancel merge will cancel a previously requested merge and block automerging
  • @dependabot reopen will reopen this PR if it is closed
  • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
  • @dependabot show <dependency name> ignore conditions will show all of the ignore conditions of the specified dependency
  • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
  • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
  • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    You can disable automated security fix PRs for this repo from the Security Alerts page.

Bumps [urllib3](https://github.com/urllib3/urllib3) from 2.0.4 to 2.0.7.
- [Release notes](https://github.com/urllib3/urllib3/releases)
- [Changelog](https://github.com/urllib3/urllib3/blob/main/CHANGES.rst)
- [Commits](urllib3/urllib3@2.0.4...2.0.7)

---
updated-dependencies:
- dependency-name: urllib3
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
@dependabot dependabot bot added the dependencies Pull requests that update a dependency file label Nov 2, 2023
ColinIanKing pushed a commit that referenced this pull request Nov 7, 2023
Chuyi Zhou says:

====================
Relax allowlist for open-coded css_task iter

Hi,
The patchset aims to relax the allowlist for open-coded css_task iter
suggested by Alexei[1].

Please see individual patches for more details. And comments are always
welcome.

Patch summary:
 * Patch #1: Relax the allowlist and let css_task iter can be used in
   bpf iters and any sleepable progs.
 * Patch #2: Add a test in cgroup_iters.c which demonstrates how
   css_task iters can be combined with cgroup iter.
 * Patch #3: Add a test to prove css_task iter can be used in normal
 * sleepable progs.
link[1]:https://lore.kernel.org/lkml/CAADnVQKafk_junRyE=-FVAik4hjTRDtThymYGEL8hGTuYoOGpA@mail.gmail.com/
---

Changes in v2:
 * Fix the incorrect logic in check_css_task_iter_allowlist. Use
   expected_attach_type to check whether we are using bpf_iters.
 * Link to v1:https://lore.kernel.org/bpf/20231022154527.229117-1-zhouchuyi@bytedance.com/T/#m946f9cde86b44a13265d9a44c5738a711eb578fd
Changes in v3:
 * Add a testcase to prove css_task can be used in fentry.s
 * Link to v2:https://lore.kernel.org/bpf/20231024024240.42790-1-zhouchuyi@bytedance.com/T/#m14a97041ff56c2df21bc0149449abd275b73f6a3
Changes in v4:
 * Add Yonghong's ack for patch #1 and patch #2.
 * Solve Yonghong's comments for patch #2
 * Move prog 'iter_css_task_for_each_sleep' from iters_task_failure.c to
   iters_css_task.c. Use RUN_TESTS to prove we can load this prog.
 * Link to v3:https://lore.kernel.org/bpf/20231025075914.30979-1-zhouchuyi@bytedance.com/T/#m3200d8ad29af4ffab97588e297361d0a45d7585d

---
====================

Link: https://lore.kernel.org/r/20231031050438.93297-1-zhouchuyi@bytedance.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
ColinIanKing pushed a commit that referenced this pull request Nov 7, 2023
When LAN9303 is MDIO-connected two callchains exist into
mdio->bus->write():

1. switch ports 1&2 ("physical" PHYs):

virtual (switch-internal) MDIO bus (lan9303_switch_ops->phy_{read|write})->
  lan9303_mdio_phy_{read|write} -> mdiobus_{read|write}_nested

2. LAN9303 virtual PHY:

virtual MDIO bus (lan9303_phy_{read|write}) ->
  lan9303_virt_phy_reg_{read|write} -> regmap -> lan9303_mdio_{read|write}

If the latter functions just take
mutex_lock(&sw_dev->device->bus->mdio_lock) it triggers a LOCKDEP
false-positive splat. It's false-positive because the first
mdio_lock in the second callchain above belongs to virtual MDIO bus, the
second mdio_lock belongs to physical MDIO bus.

Consequent annotation in lan9303_mdio_{read|write} as nested lock
(similar to lan9303_mdio_phy_{read|write}, it's the same physical MDIO bus)
prevents the following splat:

WARNING: possible circular locking dependency detected
5.15.71 #1 Not tainted
------------------------------------------------------
kworker/u4:3/609 is trying to acquire lock:
ffff000011531c68 (lan9303_mdio:131:(&lan9303_mdio_regmap_config)->lock){+.+.}-{3:3}, at: regmap_lock_mutex
but task is already holding lock:
ffff0000114c44d8 (&bus->mdio_lock){+.+.}-{3:3}, at: mdiobus_read
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #1 (&bus->mdio_lock){+.+.}-{3:3}:
       lock_acquire
       __mutex_lock
       mutex_lock_nested
       lan9303_mdio_read
       _regmap_read
       regmap_read
       lan9303_probe
       lan9303_mdio_probe
       mdio_probe
       really_probe
       __driver_probe_device
       driver_probe_device
       __device_attach_driver
       bus_for_each_drv
       __device_attach
       device_initial_probe
       bus_probe_device
       deferred_probe_work_func
       process_one_work
       worker_thread
       kthread
       ret_from_fork
-> #0 (lan9303_mdio:131:(&lan9303_mdio_regmap_config)->lock){+.+.}-{3:3}:
       __lock_acquire
       lock_acquire.part.0
       lock_acquire
       __mutex_lock
       mutex_lock_nested
       regmap_lock_mutex
       regmap_read
       lan9303_phy_read
       dsa_slave_phy_read
       __mdiobus_read
       mdiobus_read
       get_phy_device
       mdiobus_scan
       __mdiobus_register
       dsa_register_switch
       lan9303_probe
       lan9303_mdio_probe
       mdio_probe
       really_probe
       __driver_probe_device
       driver_probe_device
       __device_attach_driver
       bus_for_each_drv
       __device_attach
       device_initial_probe
       bus_probe_device
       deferred_probe_work_func
       process_one_work
       worker_thread
       kthread
       ret_from_fork
other info that might help us debug this:
 Possible unsafe locking scenario:
       CPU0                    CPU1
       ----                    ----
  lock(&bus->mdio_lock);
                               lock(lan9303_mdio:131:(&lan9303_mdio_regmap_config)->lock);
                               lock(&bus->mdio_lock);
  lock(lan9303_mdio:131:(&lan9303_mdio_regmap_config)->lock);
*** DEADLOCK ***
5 locks held by kworker/u4:3/609:
 #0: ffff000002842938 ((wq_completion)events_unbound){+.+.}-{0:0}, at: process_one_work
 #1: ffff80000bacbd60 (deferred_probe_work){+.+.}-{0:0}, at: process_one_work
 #2: ffff000007645178 (&dev->mutex){....}-{3:3}, at: __device_attach
 #3: ffff8000096e6e78 (dsa2_mutex){+.+.}-{3:3}, at: dsa_register_switch
 #4: ffff0000114c44d8 (&bus->mdio_lock){+.+.}-{3:3}, at: mdiobus_read
stack backtrace:
CPU: 1 PID: 609 Comm: kworker/u4:3 Not tainted 5.15.71 #1
Workqueue: events_unbound deferred_probe_work_func
Call trace:
 dump_backtrace
 show_stack
 dump_stack_lvl
 dump_stack
 print_circular_bug
 check_noncircular
 __lock_acquire
 lock_acquire.part.0
 lock_acquire
 __mutex_lock
 mutex_lock_nested
 regmap_lock_mutex
 regmap_read
 lan9303_phy_read
 dsa_slave_phy_read
 __mdiobus_read
 mdiobus_read
 get_phy_device
 mdiobus_scan
 __mdiobus_register
 dsa_register_switch
 lan9303_probe
 lan9303_mdio_probe
...

Cc: stable@vger.kernel.org
Fixes: dc70058 ("net: dsa: LAN9303: add MDIO managed mode support")
Signed-off-by: Alexander Sverdlin <alexander.sverdlin@siemens.com>
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Link: https://lore.kernel.org/r/20231027065741.534971-1-alexander.sverdlin@siemens.com
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
@ColinIanKing ColinIanKing deleted the dependabot/pip/drivers/gpu/drm/ci/xfails/urllib3-2.0.7 branch November 7, 2023 09:52
@dependabot @github
Copy link
Author

dependabot bot commented on behalf of github Nov 7, 2023

OK, I won't notify you again about this release, but will get in touch when a new version is available. If you'd rather skip all updates until the next major or minor version, let me know by commenting @dependabot ignore this major version or @dependabot ignore this minor version.

If you change your mind, just re-open this PR and I'll resolve any conflicts on it.

ColinIanKing pushed a commit that referenced this pull request Nov 16, 2023
KMSAN reported the following uninit-value access issue:

=====================================================
BUG: KMSAN: uninit-value in virtio_transport_recv_pkt+0x1dfb/0x26a0 net/vmw_vsock/virtio_transport_common.c:1421
 virtio_transport_recv_pkt+0x1dfb/0x26a0 net/vmw_vsock/virtio_transport_common.c:1421
 vsock_loopback_work+0x3bb/0x5a0 net/vmw_vsock/vsock_loopback.c:120
 process_one_work kernel/workqueue.c:2630 [inline]
 process_scheduled_works+0xff6/0x1e60 kernel/workqueue.c:2703
 worker_thread+0xeca/0x14d0 kernel/workqueue.c:2784
 kthread+0x3cc/0x520 kernel/kthread.c:388
 ret_from_fork+0x66/0x80 arch/x86/kernel/process.c:147
 ret_from_fork_asm+0x11/0x20 arch/x86/entry/entry_64.S:304

Uninit was stored to memory at:
 virtio_transport_space_update net/vmw_vsock/virtio_transport_common.c:1274 [inline]
 virtio_transport_recv_pkt+0x1ee8/0x26a0 net/vmw_vsock/virtio_transport_common.c:1415
 vsock_loopback_work+0x3bb/0x5a0 net/vmw_vsock/vsock_loopback.c:120
 process_one_work kernel/workqueue.c:2630 [inline]
 process_scheduled_works+0xff6/0x1e60 kernel/workqueue.c:2703
 worker_thread+0xeca/0x14d0 kernel/workqueue.c:2784
 kthread+0x3cc/0x520 kernel/kthread.c:388
 ret_from_fork+0x66/0x80 arch/x86/kernel/process.c:147
 ret_from_fork_asm+0x11/0x20 arch/x86/entry/entry_64.S:304

Uninit was created at:
 slab_post_alloc_hook+0x105/0xad0 mm/slab.h:767
 slab_alloc_node mm/slub.c:3478 [inline]
 kmem_cache_alloc_node+0x5a2/0xaf0 mm/slub.c:3523
 kmalloc_reserve+0x13c/0x4a0 net/core/skbuff.c:559
 __alloc_skb+0x2fd/0x770 net/core/skbuff.c:650
 alloc_skb include/linux/skbuff.h:1286 [inline]
 virtio_vsock_alloc_skb include/linux/virtio_vsock.h:66 [inline]
 virtio_transport_alloc_skb+0x90/0x11e0 net/vmw_vsock/virtio_transport_common.c:58
 virtio_transport_reset_no_sock net/vmw_vsock/virtio_transport_common.c:957 [inline]
 virtio_transport_recv_pkt+0x1279/0x26a0 net/vmw_vsock/virtio_transport_common.c:1387
 vsock_loopback_work+0x3bb/0x5a0 net/vmw_vsock/vsock_loopback.c:120
 process_one_work kernel/workqueue.c:2630 [inline]
 process_scheduled_works+0xff6/0x1e60 kernel/workqueue.c:2703
 worker_thread+0xeca/0x14d0 kernel/workqueue.c:2784
 kthread+0x3cc/0x520 kernel/kthread.c:388
 ret_from_fork+0x66/0x80 arch/x86/kernel/process.c:147
 ret_from_fork_asm+0x11/0x20 arch/x86/entry/entry_64.S:304

CPU: 1 PID: 10664 Comm: kworker/1:5 Not tainted 6.6.0-rc3-00146-g9f3ebbef746f #3
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-1.fc38 04/01/2014
Workqueue: vsock-loopback vsock_loopback_work
=====================================================

The following simple reproducer can cause the issue described above:

int main(void)
{
  int sock;
  struct sockaddr_vm addr = {
    .svm_family = AF_VSOCK,
    .svm_cid = VMADDR_CID_ANY,
    .svm_port = 1234,
  };

  sock = socket(AF_VSOCK, SOCK_STREAM, 0);
  connect(sock, (struct sockaddr *)&addr, sizeof(addr));
  return 0;
}

This issue occurs because the `buf_alloc` and `fwd_cnt` fields of the
`struct virtio_vsock_hdr` are not initialized when a new skb is allocated
in `virtio_transport_init_hdr()`. This patch resolves the issue by
initializing these fields during allocation.

Fixes: 71dc9ec ("virtio/vsock: replace virtio_vsock_pkt with sk_buff")
Reported-and-tested-by: syzbot+0c8ce1da0ac31abbadcd@syzkaller.appspotmail.com
Closes: https://syzkaller.appspot.com/bug?extid=0c8ce1da0ac31abbadcd
Signed-off-by: Shigeru Yoshida <syoshida@redhat.com>
Reviewed-by: Stefano Garzarella <sgarzare@redhat.com>
Link: https://lore.kernel.org/r/20231104150531.257952-1-syoshida@redhat.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
ColinIanKing pushed a commit that referenced this pull request Nov 16, 2023
Andrii Nakryiko says:

====================
BPF register bounds logic and testing improvements

This patch set adds a big set of manual and auto-generated test cases
validating BPF verifier's register bounds tracking and deduction logic. See
details in the last patch.

We start with building a tester that validates existing <range> vs <scalar>
verifier logic for range bounds. To make all this work, BPF verifier's logic
needed a bunch of improvements to handle some cases that previously were not
covered. This had no implications as to correctness of verifier logic, but it
was incomplete enough to cause significant disagreements with alternative
implementation of register bounds logic that tests in this patch set
implement. So we need BPF verifier logic improvements to make all the tests
pass. This is what we do in patches #3 through #9.

The end goal of this work, though, is to extend BPF verifier range state
tracking such as to allow to derive new range bounds when comparing non-const
registers. There is some more investigative work required to investigate and
fix existing potential issues with range tracking as part of ALU/ALU64
operations, so <range> x <range> part of v5 patch set ([0]) is dropped until
these issues are sorted out.

For now, we include preparatory refactorings and clean ups, that set up BPF
verifier code base to extend the logic to <range> vs <range> logic in
subsequent patch set. Patches #10-#16 perform preliminary refactorings without
functionally changing anything. But they do clean up check_cond_jmp_op() logic
and generalize a bunch of other pieces in is_branch_taken() logic.

  [0] https://patchwork.kernel.org/project/netdevbpf/list/?series=797178&state=*

v5->v6:
  - dropped <range> vs <range> patches (original patches #18 through #23) to
    add more register range sanity checks and fix preexisting issues;
  - comments improvements, addressing other feedback on first 17 patches
    (Eduard, Alexei);
v4->v5:
  - added entirety of verifier reg bounds tracking changes, now handling
    <range> vs <range> cases (Alexei);
  - added way more comments trying to explain why deductions added are
    correct, hopefully they are useful and clarify things a bit (Daniel,
    Shung-Hsi);
  - added two preliminary selftests fixes necessary for RELEASE=1 build to
    work again, it keeps breaking.
v3->v4:
  - improvements to reg_bounds tester (progress report, split 32-bit and
    64-bit ranges, fix various verbosity output issues, etc);
v2->v3:
  - fix a subtle little-endianness assumption inside parge_reg_state() (CI);
v1->v2:
  - fix compilation when building selftests with llvm-16 toolchain (CI).
====================

Link: https://lore.kernel.org/r/20231102033759.2541186-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
ColinIanKing pushed a commit that referenced this pull request Nov 16, 2023
Hou Tao says:

====================
From: Hou Tao <houtao1@huawei.com>

Hi,

BPF CI failed due to map_percpu_stats_percpu_hash from time to time [1].
It seems that the failure reason is per-cpu bpf memory allocator may not
be able to allocate per-cpu pointer successfully and it can not refill
free llist timely, and bpf_map_update_elem() will return -ENOMEM.

Patch #1 fixes the size of value passed to per-cpu map update API. The
problem was found when fixing the ENOMEM problem, so also post it in
this patchset. Patch #2 & #3 mitigates the ENOMEM problem by retrying
the update operation for non-preallocated per-cpu map.

Please see individual patches for more details. And comments are always
welcome.

Regards,
Tao

[1]: https://github.com/kernel-patches/bpf/actions/runs/6713177520/job/18244865326?pr=5909
====================

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
ColinIanKing pushed a commit that referenced this pull request Nov 16, 2023
Andrii Nakryiko says:

====================
BPF control flow graph and precision backtrack fixes

A small fix to BPF verifier's CFG logic around handling and reporting ldimm64
instructions. Patch #1 was previously submitted separately ([0]), and so this
patch set supersedes that patch.

Second patch is fixing obscure corner case in mark_chain_precise() logic. See
patch for details. Patch #3 adds a dedicated test, however fragile it might.

  [0] https://patchwork.kernel.org/project/netdevbpf/patch/20231101205626.119243-1-andrii@kernel.org/
====================

Link: https://lore.kernel.org/r/20231110002638.4168352-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
ColinIanKing pushed a commit that referenced this pull request Nov 16, 2023
…mory

Introduce an ioctl(), KVM_CREATE_GUEST_MEMFD, to allow creating file-based
memory that is tied to a specific KVM virtual machine and whose primary
purpose is to serve guest memory.

A guest-first memory subsystem allows for optimizations and enhancements
that are kludgy or outright infeasible to implement/support in a generic
memory subsystem.  With guest_memfd, guest protections and mapping sizes
are fully decoupled from host userspace mappings.   E.g. KVM currently
doesn't support mapping memory as writable in the guest without it also
being writable in host userspace, as KVM's ABI uses VMA protections to
define the allow guest protection.  Userspace can fudge this by
establishing two mappings, a writable mapping for the guest and readable
one for itself, but that’s suboptimal on multiple fronts.

Similarly, KVM currently requires the guest mapping size to be a strict
subset of the host userspace mapping size, e.g. KVM doesn’t support
creating a 1GiB guest mapping unless userspace also has a 1GiB guest
mapping.  Decoupling the mappings sizes would allow userspace to precisely
map only what is needed without impacting guest performance, e.g. to
harden against unintentional accesses to guest memory.

Decoupling guest and userspace mappings may also allow for a cleaner
alternative to high-granularity mappings for HugeTLB, which has reached a
bit of an impasse and is unlikely to ever be merged.

A guest-first memory subsystem also provides clearer line of sight to
things like a dedicated memory pool (for slice-of-hardware VMs) and
elimination of "struct page" (for offload setups where userspace _never_
needs to mmap() guest memory).

More immediately, being able to map memory into KVM guests without mapping
said memory into the host is critical for Confidential VMs (CoCo VMs), the
initial use case for guest_memfd.  While AMD's SEV and Intel's TDX prevent
untrusted software from reading guest private data by encrypting guest
memory with a key that isn't usable by the untrusted host, projects such
as Protected KVM (pKVM) provide confidentiality and integrity *without*
relying on memory encryption.  And with SEV-SNP and TDX, accessing guest
private memory can be fatal to the host, i.e. KVM must be prevent host
userspace from accessing guest memory irrespective of hardware behavior.

Attempt #1 to support CoCo VMs was to add a VMA flag to mark memory as
being mappable only by KVM (or a similarly enlightened kernel subsystem).
That approach was abandoned largely due to it needing to play games with
PROT_NONE to prevent userspace from accessing guest memory.

Attempt #2 to was to usurp PG_hwpoison to prevent the host from mapping
guest private memory into userspace, but that approach failed to meet
several requirements for software-based CoCo VMs, e.g. pKVM, as the kernel
wouldn't easily be able to enforce a 1:1 page:guest association, let alone
a 1:1 pfn:gfn mapping.  And using PG_hwpoison does not work for memory
that isn't backed by 'struct page', e.g. if devices gain support for
exposing encrypted memory regions to guests.

Attempt #3 was to extend the memfd() syscall and wrap shmem to provide
dedicated file-based guest memory.  That approach made it as far as v10
before feedback from Hugh Dickins and Christian Brauner (and others) led
to it demise.

Hugh's objection was that piggybacking shmem made no sense for KVM's use
case as KVM didn't actually *want* the features provided by shmem.  I.e.
KVM was using memfd() and shmem to avoid having to manage memory directly,
not because memfd() and shmem were the optimal solution, e.g. things like
read/write/mmap in shmem were dead weight.

Christian pointed out flaws with implementing a partial overlay (wrapping
only _some_ of shmem), e.g. poking at inode_operations or super_operations
would show shmem stuff, but address_space_operations and file_operations
would show KVM's overlay.  Paraphrashing heavily, Christian suggested KVM
stop being lazy and create a proper API.

Link: https://lore.kernel.org/all/20201020061859.18385-1-kirill.shutemov@linux.intel.com
Link: https://lore.kernel.org/all/20210416154106.23721-1-kirill.shutemov@linux.intel.com
Link: https://lore.kernel.org/all/20210824005248.200037-1-seanjc@google.com
Link: https://lore.kernel.org/all/20211111141352.26311-1-chao.p.peng@linux.intel.com
Link: https://lore.kernel.org/all/20221202061347.1070246-1-chao.p.peng@linux.intel.com
Link: https://lore.kernel.org/all/ff5c5b97-acdf-9745-ebe5-c6609dd6322e@google.com
Link: https://lore.kernel.org/all/20230418-anfallen-irdisch-6993a61be10b@brauner
Link: https://lore.kernel.org/all/ZEM5Zq8oo+xnApW9@google.com
Link: https://lore.kernel.org/linux-mm/20230306191944.GA15773@monkey
Link: https://lore.kernel.org/linux-mm/ZII1p8ZHlHaQ3dDl@casper.infradead.org
Cc: Fuad Tabba <tabba@google.com>
Cc: Vishal Annapurve <vannapurve@google.com>
Cc: Ackerley Tng <ackerleytng@google.com>
Cc: Jarkko Sakkinen <jarkko@kernel.org>
Cc: Maciej Szmigiero <mail@maciej.szmigiero.name>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Hildenbrand <david@redhat.com>
Cc: Quentin Perret <qperret@google.com>
Cc: Michael Roth <michael.roth@amd.com>
Cc: Wang <wei.w.wang@intel.com>
Cc: Liam Merwick <liam.merwick@oracle.com>
Cc: Isaku Yamahata <isaku.yamahata@gmail.com>
Co-developed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Co-developed-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Co-developed-by: Chao Peng <chao.p.peng@linux.intel.com>
Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Co-developed-by: Ackerley Tng <ackerleytng@google.com>
Signed-off-by: Ackerley Tng <ackerleytng@google.com>
Co-developed-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Co-developed-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20231027182217.3615211-17-seanjc@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
ColinIanKing pushed a commit that referenced this pull request Nov 16, 2023
This allows it to break the following circular locking dependency.

Aug 10 07:01:29 dg1test kernel: ======================================================
Aug 10 07:01:29 dg1test kernel: WARNING: possible circular locking dependency detected
Aug 10 07:01:29 dg1test kernel: 6.4.0-rc7+ #10 Not tainted
Aug 10 07:01:29 dg1test kernel: ------------------------------------------------------
Aug 10 07:01:29 dg1test kernel: wireplumber/2236 is trying to acquire lock:
Aug 10 07:01:29 dg1test kernel: ffff8fca5320da18 (&fctx->lock){-...}-{2:2}, at: nouveau_fence_wait_uevent_handler+0x2b/0x100 [nouveau]
Aug 10 07:01:29 dg1test kernel:
                                but task is already holding lock:
Aug 10 07:01:29 dg1test kernel: ffff8fca41208610 (&event->list_lock#2){-...}-{2:2}, at: nvkm_event_ntfy+0x50/0xf0 [nouveau]
Aug 10 07:01:29 dg1test kernel:
                                which lock already depends on the new lock.
Aug 10 07:01:29 dg1test kernel:
                                the existing dependency chain (in reverse order) is:
Aug 10 07:01:29 dg1test kernel:
                                -> #3 (&event->list_lock#2){-...}-{2:2}:
Aug 10 07:01:29 dg1test kernel:        _raw_spin_lock_irqsave+0x4b/0x70
Aug 10 07:01:29 dg1test kernel:        nvkm_event_ntfy+0x50/0xf0 [nouveau]
Aug 10 07:01:29 dg1test kernel:        ga100_fifo_nonstall_intr+0x24/0x30 [nouveau]
Aug 10 07:01:29 dg1test kernel:        nvkm_intr+0x12c/0x240 [nouveau]
Aug 10 07:01:29 dg1test kernel:        __handle_irq_event_percpu+0x88/0x240
Aug 10 07:01:29 dg1test kernel:        handle_irq_event+0x38/0x80
Aug 10 07:01:29 dg1test kernel:        handle_edge_irq+0xa3/0x240
Aug 10 07:01:29 dg1test kernel:        __common_interrupt+0x72/0x160
Aug 10 07:01:29 dg1test kernel:        common_interrupt+0x60/0xe0
Aug 10 07:01:29 dg1test kernel:        asm_common_interrupt+0x26/0x40
Aug 10 07:01:29 dg1test kernel:
                                -> #2 (&device->intr.lock){-...}-{2:2}:
Aug 10 07:01:29 dg1test kernel:        _raw_spin_lock_irqsave+0x4b/0x70
Aug 10 07:01:29 dg1test kernel:        nvkm_inth_allow+0x2c/0x80 [nouveau]
Aug 10 07:01:29 dg1test kernel:        nvkm_event_ntfy_state+0x181/0x250 [nouveau]
Aug 10 07:01:29 dg1test kernel:        nvkm_event_ntfy_allow+0x63/0xd0 [nouveau]
Aug 10 07:01:29 dg1test kernel:        nvkm_uevent_mthd+0x4d/0x70 [nouveau]
Aug 10 07:01:29 dg1test kernel:        nvkm_ioctl+0x10b/0x250 [nouveau]
Aug 10 07:01:29 dg1test kernel:        nvif_object_mthd+0xa8/0x1f0 [nouveau]
Aug 10 07:01:29 dg1test kernel:        nvif_event_allow+0x2a/0xa0 [nouveau]
Aug 10 07:01:29 dg1test kernel:        nouveau_fence_enable_signaling+0x78/0x80 [nouveau]
Aug 10 07:01:29 dg1test kernel:        __dma_fence_enable_signaling+0x5e/0x100
Aug 10 07:01:29 dg1test kernel:        dma_fence_add_callback+0x4b/0xd0
Aug 10 07:01:29 dg1test kernel:        nouveau_cli_work_queue+0xae/0x110 [nouveau]
Aug 10 07:01:29 dg1test kernel:        nouveau_gem_object_close+0x1d1/0x2a0 [nouveau]
Aug 10 07:01:29 dg1test kernel:        drm_gem_handle_delete+0x70/0xe0 [drm]
Aug 10 07:01:29 dg1test kernel:        drm_ioctl_kernel+0xa5/0x150 [drm]
Aug 10 07:01:29 dg1test kernel:        drm_ioctl+0x256/0x490 [drm]
Aug 10 07:01:29 dg1test kernel:        nouveau_drm_ioctl+0x5a/0xb0 [nouveau]
Aug 10 07:01:29 dg1test kernel:        __x64_sys_ioctl+0x91/0xd0
Aug 10 07:01:29 dg1test kernel:        do_syscall_64+0x3c/0x90
Aug 10 07:01:29 dg1test kernel:        entry_SYSCALL_64_after_hwframe+0x72/0xdc
Aug 10 07:01:29 dg1test kernel:
                                -> #1 (&event->refs_lock#4){....}-{2:2}:
Aug 10 07:01:29 dg1test kernel:        _raw_spin_lock_irqsave+0x4b/0x70
Aug 10 07:01:29 dg1test kernel:        nvkm_event_ntfy_state+0x37/0x250 [nouveau]
Aug 10 07:01:29 dg1test kernel:        nvkm_event_ntfy_allow+0x63/0xd0 [nouveau]
Aug 10 07:01:29 dg1test kernel:        nvkm_uevent_mthd+0x4d/0x70 [nouveau]
Aug 10 07:01:29 dg1test kernel:        nvkm_ioctl+0x10b/0x250 [nouveau]
Aug 10 07:01:29 dg1test kernel:        nvif_object_mthd+0xa8/0x1f0 [nouveau]
Aug 10 07:01:29 dg1test kernel:        nvif_event_allow+0x2a/0xa0 [nouveau]
Aug 10 07:01:29 dg1test kernel:        nouveau_fence_enable_signaling+0x78/0x80 [nouveau]
Aug 10 07:01:29 dg1test kernel:        __dma_fence_enable_signaling+0x5e/0x100
Aug 10 07:01:29 dg1test kernel:        dma_fence_add_callback+0x4b/0xd0
Aug 10 07:01:29 dg1test kernel:        nouveau_cli_work_queue+0xae/0x110 [nouveau]
Aug 10 07:01:29 dg1test kernel:        nouveau_gem_object_close+0x1d1/0x2a0 [nouveau]
Aug 10 07:01:29 dg1test kernel:        drm_gem_handle_delete+0x70/0xe0 [drm]
Aug 10 07:01:29 dg1test kernel:        drm_ioctl_kernel+0xa5/0x150 [drm]
Aug 10 07:01:29 dg1test kernel:        drm_ioctl+0x256/0x490 [drm]
Aug 10 07:01:29 dg1test kernel:        nouveau_drm_ioctl+0x5a/0xb0 [nouveau]
Aug 10 07:01:29 dg1test kernel:        __x64_sys_ioctl+0x91/0xd0
Aug 10 07:01:29 dg1test kernel:        do_syscall_64+0x3c/0x90
Aug 10 07:01:29 dg1test kernel:        entry_SYSCALL_64_after_hwframe+0x72/0xdc
Aug 10 07:01:29 dg1test kernel:
                                -> #0 (&fctx->lock){-...}-{2:2}:
Aug 10 07:01:29 dg1test kernel:        __lock_acquire+0x14e3/0x2240
Aug 10 07:01:29 dg1test kernel:        lock_acquire+0xc8/0x2a0
Aug 10 07:01:29 dg1test kernel:        _raw_spin_lock_irqsave+0x4b/0x70
Aug 10 07:01:29 dg1test kernel:        nouveau_fence_wait_uevent_handler+0x2b/0x100 [nouveau]
Aug 10 07:01:29 dg1test kernel:        nvkm_client_event+0xf/0x20 [nouveau]
Aug 10 07:01:29 dg1test kernel:        nvkm_event_ntfy+0x9b/0xf0 [nouveau]
Aug 10 07:01:29 dg1test kernel:        ga100_fifo_nonstall_intr+0x24/0x30 [nouveau]
Aug 10 07:01:29 dg1test kernel:        nvkm_intr+0x12c/0x240 [nouveau]
Aug 10 07:01:29 dg1test kernel:        __handle_irq_event_percpu+0x88/0x240
Aug 10 07:01:29 dg1test kernel:        handle_irq_event+0x38/0x80
Aug 10 07:01:29 dg1test kernel:        handle_edge_irq+0xa3/0x240
Aug 10 07:01:29 dg1test kernel:        __common_interrupt+0x72/0x160
Aug 10 07:01:29 dg1test kernel:        common_interrupt+0x60/0xe0
Aug 10 07:01:29 dg1test kernel:        asm_common_interrupt+0x26/0x40
Aug 10 07:01:29 dg1test kernel:
                                other info that might help us debug this:
Aug 10 07:01:29 dg1test kernel: Chain exists of:
                                  &fctx->lock --> &device->intr.lock --> &event->list_lock#2
Aug 10 07:01:29 dg1test kernel:  Possible unsafe locking scenario:
Aug 10 07:01:29 dg1test kernel:        CPU0                    CPU1
Aug 10 07:01:29 dg1test kernel:        ----                    ----
Aug 10 07:01:29 dg1test kernel:   lock(&event->list_lock#2);
Aug 10 07:01:29 dg1test kernel:                                lock(&device->intr.lock);
Aug 10 07:01:29 dg1test kernel:                                lock(&event->list_lock#2);
Aug 10 07:01:29 dg1test kernel:   lock(&fctx->lock);
Aug 10 07:01:29 dg1test kernel:
                                 *** DEADLOCK ***
Aug 10 07:01:29 dg1test kernel: 2 locks held by wireplumber/2236:
Aug 10 07:01:29 dg1test kernel:  #0: ffff8fca53177bf8 (&device->intr.lock){-...}-{2:2}, at: nvkm_intr+0x29/0x240 [nouveau]
Aug 10 07:01:29 dg1test kernel:  #1: ffff8fca41208610 (&event->list_lock#2){-...}-{2:2}, at: nvkm_event_ntfy+0x50/0xf0 [nouveau]
Aug 10 07:01:29 dg1test kernel:
                                stack backtrace:
Aug 10 07:01:29 dg1test kernel: CPU: 6 PID: 2236 Comm: wireplumber Not tainted 6.4.0-rc7+ #10
Aug 10 07:01:29 dg1test kernel: Hardware name: Gigabyte Technology Co., Ltd. Z390 I AORUS PRO WIFI/Z390 I AORUS PRO WIFI-CF, BIOS F8 11/05/2021
Aug 10 07:01:29 dg1test kernel: Call Trace:
Aug 10 07:01:29 dg1test kernel:  <TASK>
Aug 10 07:01:29 dg1test kernel:  dump_stack_lvl+0x5b/0x90
Aug 10 07:01:29 dg1test kernel:  check_noncircular+0xe2/0x110
Aug 10 07:01:29 dg1test kernel:  __lock_acquire+0x14e3/0x2240
Aug 10 07:01:29 dg1test kernel:  lock_acquire+0xc8/0x2a0
Aug 10 07:01:29 dg1test kernel:  ? nouveau_fence_wait_uevent_handler+0x2b/0x100 [nouveau]
Aug 10 07:01:29 dg1test kernel:  ? lock_acquire+0xc8/0x2a0
Aug 10 07:01:29 dg1test kernel:  _raw_spin_lock_irqsave+0x4b/0x70
Aug 10 07:01:29 dg1test kernel:  ? nouveau_fence_wait_uevent_handler+0x2b/0x100 [nouveau]
Aug 10 07:01:29 dg1test kernel:  nouveau_fence_wait_uevent_handler+0x2b/0x100 [nouveau]
Aug 10 07:01:29 dg1test kernel:  nvkm_client_event+0xf/0x20 [nouveau]
Aug 10 07:01:29 dg1test kernel:  nvkm_event_ntfy+0x9b/0xf0 [nouveau]
Aug 10 07:01:29 dg1test kernel:  ga100_fifo_nonstall_intr+0x24/0x30 [nouveau]
Aug 10 07:01:29 dg1test kernel:  nvkm_intr+0x12c/0x240 [nouveau]
Aug 10 07:01:29 dg1test kernel:  __handle_irq_event_percpu+0x88/0x240
Aug 10 07:01:29 dg1test kernel:  handle_irq_event+0x38/0x80
Aug 10 07:01:29 dg1test kernel:  handle_edge_irq+0xa3/0x240
Aug 10 07:01:29 dg1test kernel:  __common_interrupt+0x72/0x160
Aug 10 07:01:29 dg1test kernel:  common_interrupt+0x60/0xe0
Aug 10 07:01:29 dg1test kernel:  asm_common_interrupt+0x26/0x40
Aug 10 07:01:29 dg1test kernel: RIP: 0033:0x7fb66174d700
Aug 10 07:01:29 dg1test kernel: Code: c1 e2 05 29 ca 8d 0c 10 0f be 07 84 c0 75 eb 89 c8 c3 0f 1f 84 00 00 00 00 00 f3 0f 1e fa e9 d7 0f fc ff 0f 1f 80 00 00 00 00 <f3> 0f 1e fa e9 c7 0f fc>
Aug 10 07:01:29 dg1test kernel: RSP: 002b:00007ffdd3c48438 EFLAGS: 00000206
Aug 10 07:01:29 dg1test kernel: RAX: 000055bb758763c0 RBX: 000055bb758752c0 RCX: 00000000000028b0
Aug 10 07:01:29 dg1test kernel: RDX: 000055bb758752c0 RSI: 000055bb75887490 RDI: 000055bb75862950
Aug 10 07:01:29 dg1test kernel: RBP: 00007ffdd3c48490 R08: 000055bb75873b10 R09: 0000000000000001
Aug 10 07:01:29 dg1test kernel: R10: 0000000000000004 R11: 000055bb7587f000 R12: 000055bb75887490
Aug 10 07:01:29 dg1test kernel: R13: 000055bb757f6280 R14: 000055bb758875c0 R15: 000055bb757f6280
Aug 10 07:01:29 dg1test kernel:  </TASK>

Signed-off-by: Dave Airlie <airlied@redhat.com>
Tested-by: Danilo Krummrich <dakr@redhat.com>
Reviewed-by: Danilo Krummrich <dakr@redhat.com>
Signed-off-by: Danilo Krummrich <dakr@redhat.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20231107053255.2257079-1-airlied@gmail.com
ColinIanKing pushed a commit that referenced this pull request Nov 16, 2023
Andrii Nakryiko says:

====================
BPF register bounds range vs range support

This patch set is a continuation of work started in [0]. It adds a big set of
manual, auto-generated, and now also random test cases validating BPF
verifier's register bounds tracking and deduction logic.

First few patches generalize verifier's logic to handle conditional jumps and
corresponding range adjustments in case when two non-const registers are
compared to each other. Patch #1 generalizes reg_set_min_max() portion, while
patch #2 does the same for is_branch_taken() part of the overall solution.

Patch #3 improves equality and inequality for cases when BPF program code
mixes 64-bit and 32-bit uses of the same register. Depending on specific
sequence, it's possible to get to the point where u64/s64 bounds will be very
generic (e.g., after signed 32-bit comparison), while we still keep pretty
tight u32/s32 bounds. If in such state we proceed with 32-bit equality or
inequality comparison, reg_set_min_max() might have to deal with adjusting s32
bounds for two registers that don't overlap, which breaks reg_set_min_max().
This doesn't manifest in <range> vs <const> cases, because if that happens
reg_set_min_max() in effect will force s32 bounds to be a new "impossible"
constant (from original smin32/smax32 bounds point of view). Things get tricky
when we have <range> vs <range> adjustments, so instead of trying to somehow
make sense out of such situations, it's best to detect such impossible
situations and prune the branch that can't be taken in is_branch_taken()
logic.  This equality/inequality was the only such category of situations with
auto-generated tests added later in the patch set.

But when we start mixing arithmetic operations in different numeric domains
and conditionals, things get even hairier. So, patch #4 adds sanity checking
logic after all ALU/ALU64, JMP/JMP32, and LDX operations. By default, instead
of failing verification, we conservatively reset range bounds to unknown
values, reporting violation in verifier log (if verbose logs are requested).
But to aid development, detection, and debugging, we also introduce a new test
flag, BPF_F_TEST_SANITY_STRICT, which triggers verification failure on range
sanity violation.

Patch #11 sets BPF_F_TEST_SANITY_STRICT by default for test_progs and
test_verifier. Patch #12 adds support for controlling this in veristat for
testing with production BPF object files.

Getting back to BPF verifier, patches #5 and #6 complete verifier's range
tracking logic clean up. See respective patches for details.

With kernel-side taken care of, we move to testing. We start with building
a tester that validates existing <range> vs <scalar> verifier logic for range
bounds. Patch #7 implements an initial version of such a tester. We guard
millions of generated tests behind SLOW_TESTS=1 envvar requirement, but also
have a relatively small number of tricky cases that came up during development
and debugging of this work. Those will be executed as part of a normal
test_progs run.

Patch #8 simulates more nuanced JEQ/JNE logic we added to verifier in patch #3.
Patch #9 adds <range> vs <range> "slow tests".

Patch #10 is a completely new one, it adds a bunch of randomly generated cases
to be run normally, without SLOW_TESTS=1 guard. This should help to get
a bunch of cover, and hopefully find some remaining latent problems if
verifier proactively as part of normal BPF CI runs.

Finally, a tiny test which was, amazingly, an initial motivation for this
whole work, is added in lucky patch #13, demonstrating how verifier is now
smart enough to track actual number of elements in the array and won't require
additional checks on loop iteration variable inside the bpf_for() open-coded
iterator loop.

  [0] https://patchwork.kernel.org/project/netdevbpf/list/?series=798308&state=*

v1->v2:
  - use x < y => y > x property to minimize reg_set_min_max (Eduard);
  - fix for JEQ/JNE logic in reg_bounds.c (Eduard);
  - split BPF_JSET and !BPF_JSET cases handling (Shung-Hsi);
  - adjustments to reg_bounds.c to make it easier to follow (Alexei);
  - added acks (Eduard, Shung-Hsi).
====================

Link: https://lore.kernel.org/r/20231112010609.848406-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
ColinIanKing pushed a commit that referenced this pull request Nov 20, 2023
syzbot found a potential circular dependency leading to a deadlock:
    -> #3 (&hdev->req_lock){+.+.}-{3:3}:
    __mutex_lock_common+0x1b6/0x1bc2 kernel/locking/mutex.c:599
    __mutex_lock kernel/locking/mutex.c:732 [inline]
    mutex_lock_nested+0x17/0x1c kernel/locking/mutex.c:784
    hci_dev_do_close+0x3f/0x9f net/bluetooth/hci_core.c:551
    hci_rfkill_set_block+0x130/0x1ac net/bluetooth/hci_core.c:935
    rfkill_set_block+0x1e6/0x3b8 net/rfkill/core.c:345
    rfkill_fop_write+0x2d8/0x672 net/rfkill/core.c:1274
    vfs_write+0x277/0xcf5 fs/read_write.c:594
    ksys_write+0x19b/0x2bd fs/read_write.c:650
    do_syscall_x64 arch/x86/entry/common.c:55 [inline]
    do_syscall_64+0x51/0xba arch/x86/entry/common.c:93
    entry_SYSCALL_64_after_hwframe+0x61/0xcb

    -> #2 (rfkill_global_mutex){+.+.}-{3:3}:
    __mutex_lock_common+0x1b6/0x1bc2 kernel/locking/mutex.c:599
    __mutex_lock kernel/locking/mutex.c:732 [inline]
    mutex_lock_nested+0x17/0x1c kernel/locking/mutex.c:784
    rfkill_register+0x30/0x7e3 net/rfkill/core.c:1045
    hci_register_dev+0x48f/0x96d net/bluetooth/hci_core.c:2622
    __vhci_create_device drivers/bluetooth/hci_vhci.c:341 [inline]
    vhci_create_device+0x3ad/0x68f drivers/bluetooth/hci_vhci.c:374
    vhci_get_user drivers/bluetooth/hci_vhci.c:431 [inline]
    vhci_write+0x37b/0x429 drivers/bluetooth/hci_vhci.c:511
    call_write_iter include/linux/fs.h:2109 [inline]
    new_sync_write fs/read_write.c:509 [inline]
    vfs_write+0xaa8/0xcf5 fs/read_write.c:596
    ksys_write+0x19b/0x2bd fs/read_write.c:650
    do_syscall_x64 arch/x86/entry/common.c:55 [inline]
    do_syscall_64+0x51/0xba arch/x86/entry/common.c:93
    entry_SYSCALL_64_after_hwframe+0x61/0xcb

    -> #1 (&data->open_mutex){+.+.}-{3:3}:
    __mutex_lock_common+0x1b6/0x1bc2 kernel/locking/mutex.c:599
    __mutex_lock kernel/locking/mutex.c:732 [inline]
    mutex_lock_nested+0x17/0x1c kernel/locking/mutex.c:784
    vhci_send_frame+0x68/0x9c drivers/bluetooth/hci_vhci.c:75
    hci_send_frame+0x1cc/0x2ff net/bluetooth/hci_core.c:2989
    hci_sched_acl_pkt net/bluetooth/hci_core.c:3498 [inline]
    hci_sched_acl net/bluetooth/hci_core.c:3583 [inline]
    hci_tx_work+0xb94/0x1a60 net/bluetooth/hci_core.c:3654
    process_one_work+0x901/0xfb8 kernel/workqueue.c:2310
    worker_thread+0xa67/0x1003 kernel/workqueue.c:2457
    kthread+0x36a/0x430 kernel/kthread.c:319
    ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:298

    -> #0 ((work_completion)(&hdev->tx_work)){+.+.}-{0:0}:
    check_prev_add kernel/locking/lockdep.c:3053 [inline]
    check_prevs_add kernel/locking/lockdep.c:3172 [inline]
    validate_chain kernel/locking/lockdep.c:3787 [inline]
    __lock_acquire+0x2d32/0x77fa kernel/locking/lockdep.c:5011
    lock_acquire+0x273/0x4d5 kernel/locking/lockdep.c:5622
    __flush_work+0xee/0x19f kernel/workqueue.c:3090
    hci_dev_close_sync+0x32f/0x1113 net/bluetooth/hci_sync.c:4352
    hci_dev_do_close+0x47/0x9f net/bluetooth/hci_core.c:553
    hci_rfkill_set_block+0x130/0x1ac net/bluetooth/hci_core.c:935
    rfkill_set_block+0x1e6/0x3b8 net/rfkill/core.c:345
    rfkill_fop_write+0x2d8/0x672 net/rfkill/core.c:1274
    vfs_write+0x277/0xcf5 fs/read_write.c:594
    ksys_write+0x19b/0x2bd fs/read_write.c:650
    do_syscall_x64 arch/x86/entry/common.c:55 [inline]
    do_syscall_64+0x51/0xba arch/x86/entry/common.c:93
    entry_SYSCALL_64_after_hwframe+0x61/0xcb

This change removes the need for acquiring the open_mutex in
vhci_send_frame, thus eliminating the potential deadlock while
maintaining the required packet ordering.

Fixes: 92d4abd ("Bluetooth: vhci: Fix race when opening vhci device")
Signed-off-by: Ying Hsu <yinghsu@chromium.org>
Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com>
ColinIanKing pushed a commit that referenced this pull request Nov 20, 2023
Andrii Nakryiko says:

====================
BPF verifier log improvements

This patch set moves a big chunk of verifier log related code from gigantic
verifier.c file into more focused kernel/bpf/log.c. This is not essential to
the rest of functionality in this patch set, so I can undo it, but it felt
like it's good to start chipping away from 20K+ verifier.c whenever we can.

The main purpose of the patch set, though, is in improving verifier log
further.

Patches #3-#4 start printing out register state even if that register is
spilled into stack slot. Previously we'd get only spilled register type, but
no additional information, like SCALAR_VALUE's ranges. Super limiting during
debugging. For cases of register spills smaller than 8 bytes, we also print
out STACK_MISC/STACK_ZERO/STACK_INVALID markers. This, among other things,
will make it easier to write tests for these mixed spill/misc cases.

Patch #5 prints map name for PTR_TO_MAP_VALUE/PTR_TO_MAP_KEY/CONST_PTR_TO_MAP
registers. In big production BPF programs, it's important to map assembly to
actual map, and it's often non-trivial. Having map name helps.

Patch #6 just removes visual noise in form of ubiquitous imm=0 and off=0. They
are default values, omit them.

Patch #7 is probably the most controversial, but it reworks how verifier log
prints numbers. For small valued integers we use decimals, but for large ones
we switch to hexadecimal. From personal experience this is a much more useful
convention. We can tune what consitutes "small value", for now it's 16-bit
range.

Patch #8 prints frame number for PTR_TO_CTX registers, if that frame is
different from the "current" one. This removes ambiguity and confusion,
especially in complicated cases with multiple subprogs passing around
pointers.

v2->v3:
  - adjust reg_bounds tester to parse hex form of reg state as well;
  - print reg->range as unsigned (Alexei);
v1->v2:
  - use verbose_snum() for range and offset in register state (Eduard);
  - fixed typos and added acks from Eduard and Stanislav.
====================

Link: https://lore.kernel.org/r/20231118034623.3320920-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
ColinIanKing pushed a commit that referenced this pull request Nov 23, 2023
…f-times'

Eduard Zingerman says:

====================
verify callbacks as if they are called unknown number of times

This series updates verifier logic for callback functions handling.
Current master simulates callback body execution exactly once,
which leads to verifier not detecting unsafe programs like below:

    static int unsafe_on_zero_iter_cb(__u32 idx, struct num_context *ctx)
    {
        ctx->i = 0;
        return 0;
    }

    SEC("?raw_tp")
    int unsafe_on_zero_iter(void *unused)
    {
        struct num_context loop_ctx = { .i = 32 };
        __u8 choice_arr[2] = { 0, 1 };

        bpf_loop(100, unsafe_on_zero_iter_cb, &loop_ctx, 0);
        return choice_arr[loop_ctx.i];
    }

This was reported previously in [0].
The basic idea of the fix is to schedule callback entry state for
verification in env->head until some identical, previously visited
state in current DFS state traversal is found. Same logic as with open
coded iterators, and builds on top recent fixes [1] for those.

The series is structured as follows:
- patches #1,2,3 update strobemeta, xdp_synproxy selftests and
  bpf_loop_bench benchmark to allow convergence of the bpf_loop
  callback states;
- patches #4,5 just shuffle the code a bit;
- patch #6 is the main part of the series;
- patch #7 adds test cases for #6;
- patch #8 extend patch #6 with same speculative scalar widening
  logic, as used for open coded iterators;
- patch #9 adds test cases for #8;
- patch #10 extends patch #6 to track maximal number of callback
  executions specifically for bpf_loop();
- patch #11 adds test cases for #10.

Veristat results comparing this series to master+patches #1,2,3 using selftests
show the following difference:

File                       Program        States (A)  States (B)  States (DIFF)
-------------------------  -------------  ----------  ----------  -------------
bpf_loop_bench.bpf.o       benchmark               1           2  +1 (+100.00%)
pyperf600_bpf_loop.bpf.o   on_event              322         407  +85 (+26.40%)
strobemeta_bpf_loop.bpf.o  on_event              113         151  +38 (+33.63%)
xdp_synproxy_kern.bpf.o    syncookie_tc          341         291  -50 (-14.66%)
xdp_synproxy_kern.bpf.o    syncookie_xdp         344         301  -43 (-12.50%)

Veristat results comparing this series to master using Tetragon BPF
files [2] also show some differences.
States diff varies from +2% to +15% on 23 programs out of 186,
no new failures.

Changelog:
- V3 [5] -> V4, changes suggested by Andrii:
  - validate mark_chain_precision() result in patch #10;
  - renaming s/cumulative_callback_depth/callback_unroll_depth/.
- V2 [4] -> V3:
  - fixes in expected log messages for test cases:
    - callback_result_precise;
    - parent_callee_saved_reg_precise_with_callback;
    - parent_stack_slot_precise_with_callback;
  - renamings (suggested by Alexei):
    - s/callback_iter_depth/cumulative_callback_depth/
    - s/is_callback_iter_next/calls_callback/
    - s/mark_callback_iter_next/mark_calls_callback/
  - prepare_func_exit() updated to exit with -EFAULT when
    callee->in_callback_fn is true but calls_callback() is not true
    for callsite;
  - test case 'bpf_loop_iter_limit_nested' rewritten to use return
    value check instead of verifier log message checks
    (suggested by Alexei).
- V1 [3] -> V2, changes suggested by Andrii:
  - small changes for error handling code in __check_func_call();
  - callback body processing log is now matched in relevant
    verifier_subprog_precision.c tests;
  - R1 passed to bpf_loop() is now always marked as precise;
  - log level 2 message for bpf_loop() iteration termination instead of
    iteration depth messages;
  - __no_msg macro removed;
  - bpf_loop_iter_limit_nested updated to avoid using __no_msg;
  - commit message for patch #3 updated according to Alexei's request.

[0] https://lore.kernel.org/bpf/CA+vRuzPChFNXmouzGG+wsy=6eMcfr1mFG0F3g7rbg-sedGKW3w@mail.gmail.com/
[1] https://lore.kernel.org/bpf/20231024000917.12153-1-eddyz87@gmail.com/
[2] git@github.com:cilium/tetragon.git
[3] https://lore.kernel.org/bpf/20231116021803.9982-1-eddyz87@gmail.com/T/#t
[4] https://lore.kernel.org/bpf/20231118013355.7943-1-eddyz87@gmail.com/T/#t
[5] https://lore.kernel.org/bpf/20231120225945.11741-1-eddyz87@gmail.com/T/#t
====================

Link: https://lore.kernel.org/r/20231121020701.26440-1-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
ColinIanKing pushed a commit that referenced this pull request Nov 23, 2023
Petr Machata says:

====================
mlxsw: Preparations for support of CFF flood mode

PGT is an in-HW table that maps addresses to sets of ports. Then when some
HW process needs a set of ports as an argument, instead of embedding the
actual set in the dynamic configuration, what gets configured is the
address referencing the set. The HW then works with the appropriate PGT
entry.

Among other allocations, the PGT currently contains two large blocks for
bridge flooding: one for 802.1q and one for 802.1d. Within each of these
blocks are three tables, for unknown-unicast, multicast and broadcast
flooding:

      . . . |    802.1q    |    802.1d    | . . .
            | UC | MC | BC | UC | MC | BC |
             \______ _____/ \_____ ______/
                    v             v
                   FID flood vectors

Thus each FID (which corresponds to an 802.1d bridge or one VLAN in an
802.1q bridge) uses three flood vectors spread across a fairly large region
of PGT.

This way of organizing the flood table (called "controlled") is not very
flexible. E.g. to decrease a bridge scale and store more IP MC vectors, one
would need to completely rewrite the bridge PGT blocks, or resort to hacks
such as storing individual MC flood vectors into unused part of the bridge
table.

In order to address these shortcomings, Spectrum-2 and above support what
is called CFF flood mode, for Compressed FID Flooding. In CFF flood mode,
each FID has a little table of its own, with three entries adjacent to each
other, one for unknown-UC, one for MC, one for BC. This allows for a much
more fine-grained approach to PGT management, where bits of it are
allocated on demand.

      . . . | FID | FID | FID | FID | FID | . . .
            |U|M|B|U|M|B|U|M|B|U|M|B|U|M|B|
             \_____________ _____________/
                           v
                   FID flood vectors

Besides the FID table organization, the CFF flood mode also impacts Router
Subport (RSP) table. This table contains flood vectors for rFIDs, which are
FIDs that reference front panel ports or LAGs. The RSP table contains two
entries per front panel port and LAG, one for unknown-UC traffic, and one
for everything else. Currently, the FW allocates and manages the table in
its own part of PGT. rFIDs are marked with flood_rsp bit and managed
specially. In CFF mode, rFIDs are managed as all other FIDs. The driver
therefore has to allocate and maintain the flood vectors. Like with bridge
FIDs, this is more work, but increases flexibility of the system.

The FW currently supports both the controlled and CFF flood modes. To shed
complexity, in the future it should only support CFF flood mode. Hence this
patchset, which is the first in series of two to add CFF flood mode support
to mlxsw.

There are FW versions out there that do not support CFF flood mode, and on
Spectrum-1 in particular, there is no plan to support it at all. mlxsw will
therefore have to support both controlled flood mode as well as CFF.

Another aspect is that at least on Spectrum-1, there are FW versions out
there that claim to support CFF flood mode, but then reject or ignore
configurations enabling the same. The driver thus has to have a say in
whether an attempt to configure CFF flood mode should even be made.

Much like with the LAG mode, the feature is therefore expressed in terms of
"does the driver prefer CFF flood mode?", and "what flood mode the PCI
module managed to configure the FW with". This gives to the driver a chance
to determine whether CFF flood mode configuration should be attempted.

In this patchset, we lay the ground with new definitions, registers and
their fields, and some minor code shaping. The next patchset will be more
focused on introducing necessary abstractions and implementation.

- Patches #1 and #2 add CFF-related items to the command interface.

- Patch #3 adds a new resource, for maximum number of flood profiles
  supported. (A flood profile is a mapping between traffic type and offset
  in the per-FID flood vector table.)

- Patches #4 to #8 adjust reg.h. The SFFP register is added, which is used
  for configuring the abovementioned traffic-type-to-offset mapping. The
  SFMR, register, which serves for FID configuration, is extended with
  fields specific to CFF mode. And other minor adjustments.

- Patches #9 and #10 add the plumbing for CFF mode: a way to request that
  CFF flood mode be configured, and a way to query the flood mode that was
  actually configured.

- Patch #11 removes dead code.

- Patches #12 and #13 add helpers that the next patchset will make use of.
  Patch #14 moves RIF setup ahead so that FID code can make use of it.
====================

Link: https://lore.kernel.org/r/cover.1700503643.git.petrm@nvidia.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
ColinIanKing pushed a commit that referenced this pull request Dec 4, 2023
When scanning namespaces, it is possible to get valid data from the first
call to nvme_identify_ns() in nvme_alloc_ns(), but not from the second
call in nvme_update_ns_info_block().  In particular, if the NSID becomes
inactive between the two commands, a storage device may return a buffer
filled with zero as per 4.1.5.1.  In this case, we can get a kernel crash
due to a divide-by-zero in blk_stack_limits() because ns->lba_shift will
be set to zero.

PID: 326      TASK: ffff95fec3cd8000  CPU: 29   COMMAND: "kworker/u98:10"
 #0 [ffffad8f8702f9e0] machine_kexec at ffffffff91c76ec7
 #1 [ffffad8f8702fa38] __crash_kexec at ffffffff91dea4fa
 #2 [ffffad8f8702faf8] crash_kexec at ffffffff91deb788
 #3 [ffffad8f8702fb00] oops_end at ffffffff91c2e4bb
 #4 [ffffad8f8702fb20] do_trap at ffffffff91c2a4ce
 #5 [ffffad8f8702fb70] do_error_trap at ffffffff91c2a595
 #6 [ffffad8f8702fbb0] exc_divide_error at ffffffff928506e6
 #7 [ffffad8f8702fbd0] asm_exc_divide_error at ffffffff92a00926
    [exception RIP: blk_stack_limits+434]
    RIP: ffffffff92191872  RSP: ffffad8f8702fc80  RFLAGS: 00010246
    RAX: 0000000000000000  RBX: ffff95efa0c91800  RCX: 0000000000000001
    RDX: 0000000000000000  RSI: 0000000000000001  RDI: 0000000000000001
    RBP: 00000000ffffffff   R8: ffff95fec7df35a8   R9: 0000000000000000
    R10: 0000000000000000  R11: 0000000000000001  R12: 0000000000000000
    R13: 0000000000000000  R14: 0000000000000000  R15: ffff95fed33c09a8
    ORIG_RAX: ffffffffffffffff  CS: 0010  SS: 0018
 #8 [ffffad8f8702fce0] nvme_update_ns_info_block at ffffffffc06d3533 [nvme_core]
 #9 [ffffad8f8702fd18] nvme_scan_ns at ffffffffc06d6fa7 [nvme_core]

This happened when the check for valid data was moved out of nvme_identify_ns()
into one of the callers.  Fix this by checking in both callers.

Link: https://bugzilla.kernel.org/show_bug.cgi?id=218186
Fixes: 0dd6fff ("nvme: bring back auto-removal of deleted namespaces during sequential scan")
Cc: stable@vger.kernel.org
Signed-off-by: Ewan D. Milne <emilne@redhat.com>
Signed-off-by: Keith Busch <kbusch@kernel.org>
ColinIanKing pushed a commit that referenced this pull request Dec 4, 2023
Currently DP driver is executed independent of PM runtime framework.
This leads msm eDP panel can not being detected by edp_panel driver
during generic_edp_panel_probe() due to AUX DPCD read failed at
edp panel driver. Incorporate PM runtime framework into DP driver so
that host controller's power and clocks are enable/disable through
PM runtime mechanism.  Once PM runtime framework is incorporated into
DP driver, waking up device from power up path is not necessary. Hence
remove it.

After incorporating pm_runtime framework into eDP/DP driver,
dp_pm_suspend() to handle power off both DP phy and controller during
suspend and dp_pm_resume() to handle power on both DP phy and controller
during resume are not necessary. Therefore both dp_pm_suspend() and
dp_pm_resume() are dropped and replace with dp_pm_runtime_suspend() and
dp_pm_runtime_resume() respectively.

Changes in v9:
-- silent compiler warning message at dp_power_init() and dp_power_deinit()
   with W1 flag

Changes in v7:
-- add comments to dp_pm_runtime_resume()
-- add comments to dp_bridge_hpd_enable()
-- delete dp->hpd_state = ST_DISCONNECTED from dp_bridge_hpd_notify()

Changes in v6:
-- delete dp_power_client_deinit(dp->power);
-- remove if (!dp->dp_display.is_edp) condition checkout at plug_handle()
-- remove if (!dp->dp_display.is_edp) condition checkout at unplug_handle()
-- add IRQF_NO_AUTOEN to devm_request_irq()
-- add enable_irq() and disable_irq() to pm_runtime_resume()/suspend()
-- del dp->hpd_state = ST_DISCONNECTED from dp_bridge_hpd_disable()

Changes in v5:
-- remove pm_runtime_put_autosuspend feature, use pm_runtime_put_sync()
-- squash add pm_runtime_force_suspend()/resume() patch into this patch

Changes in v4:
-- reworded commit text to explain why pm_framework is required for
   edp panel
-- reworded commit text to explain autosuspend is choiced
-- delete EV_POWER_PM_GET and PM_EV_POWER_PUT from changes #3
-- delete dp_display_pm_get() and dp_display_pm_Put() from changes #3
-- return value from pm_runtime_resume_and_get() directly
-- check return value of devm_pm_runtime_enable()
-- delete pm_runtime_xxx from dp_display_remove()
-- drop dp_display_host_init() from EV_HPD_INIT_SETUP
-- drop both dp_pm_prepare() and dp_pm_compete() from this change
-- delete ST_SUSPENDED state
-- rewording commit text to add more details regrading the purpose
   of this change

Changes in v3:
-- incorporate removing pm_runtime_xx() from dp_pwer.c to this patch
-- use pm_runtime_resume_and_get() instead of pm_runtime_get()
-- error checking pm_runtime_resume_and_get() return value
-- add EV_POWER_PM_GET and PM_EV_POWER_PUT to handle HPD_GPIO case
-- replace dp_pm_suspend() with pm_runtime_force_suspend()
-- replace dp_pm_resume() with pm_runtime_force_resume()

Signed-off-by: Kuogee Hsieh <quic_khsieh@quicinc.com>
Reviewed-by: Dmitry Baryshkov <dmitry.baryshkov@linaro.org>
Patchwork: https://patchwork.freedesktop.org/patch/570073/
Link: https://lore.kernel.org/r/1701472789-25951-6-git-send-email-quic_khsieh@quicinc.com
Signed-off-by: Dmitry Baryshkov <dmitry.baryshkov@linaro.org>
ColinIanKing pushed a commit that referenced this pull request Dec 13, 2023
Patch series "Multi-size THP for anonymous memory", v9.

A series to implement multi-size THP (mTHP) for anonymous memory
(previously called "small-sized THP" and "large anonymous folios").

The objective of this is to improve performance by allocating larger
chunks of memory during anonymous page faults:

1) Since SW (the kernel) is dealing with larger chunks of memory than base
   pages, there are efficiency savings to be had; fewer page faults, batched PTE
   and RMAP manipulation, reduced lru list, etc. In short, we reduce kernel
   overhead. This should benefit all architectures.
2) Since we are now mapping physically contiguous chunks of memory, we can take
   advantage of HW TLB compression techniques. A reduction in TLB pressure
   speeds up kernel and user space. arm64 systems have 2 mechanisms to coalesce
   TLB entries; "the contiguous bit" (architectural) and HPA (uarch).

This version incorporates David's feedback on the core patches (#3, #4)
and adds some RB and TB tags (see change log for details).

By default, the existing behaviour (and performance) is maintained.  The
user must explicitly enable multi-size THP to see the performance benefit.
This is done via a new sysfs interface (as recommended by David
Hildenbrand - thanks to David for the suggestion)!  This interface is
inspired by the existing per-hugepage-size sysfs interface used by
hugetlb, provides full backwards compatibility with the existing PMD-size
THP interface, and provides a base for future extensibility.  See [9] for
detailed discussion of the interface.

This series is based on mm-unstable (715b67adf4c8).


Prerequisites
=============

I'm removing this section on the basis that I don't believe what we were
previously calling prerequisites are really prerequisites anymore.  We
originally defined them when mTHP was a compile-time feature.  There is
now a runtime control to opt-in to mTHP; when disabled, correctness and
performance are as before.  When enabled, the code is still
correct/robust, but in the absence of the one remaining item (compaction)
there may be a performance impact in some corners.  See the old list in
the v8 cover letter at [8].  And a longer explanation of my thinking here
[10].

SUMMARY: I don't think we should hold this series up, waiting for the
items on the prerequisites list.  I believe this series should be ready
now so hopefully can be added to mm-unstable for some testing, then
fingers crossed for v6.8.


Testing
=======

The series includes patches for mm selftests to enlighten the cow and
khugepaged tests to explicitly test with multi-size THP, in the same way
that PMD-sized THP is tested.  The new tests all pass, and no regressions
are observed in the mm selftest suite.  I've also run my usual kernel
compilation and java script benchmarks without any issues.

Refer to my performance numbers posted with v6 [6].  (These are for
multi-size THP only - they do not include the arm64 contpte follow-on
series).

John Hubbard at Nvidia has indicated dramatic 10x performance improvements
for some workloads at [11].  (Observed using v6 of this series as well as
the arm64 contpte series).

Kefeng Wang at Huawei has also indicated he sees improvements at [12] although
there are some latency regressions also.

I've also checked that there is no regression in the write fault path when
mTHP is disabled using a microbenchmark.  I ran it for a baseline kernel,
as well as v8 and v9.  I repeated on Ampere Altra (bare metal) and Apple
M2 (VM):

|              |        m2 vm        |        altra        |
|--------------|---------------------|---------------------|
| kernel       |     mean |  std_rel |     mean |  std_rel |
|--------------|----------|----------|----------|----------|
| baseline     |   0.000% |   0.341% |   0.000% |   3.581% |
| anonfolio-v8 |   0.005% |   0.272% |   5.068% |   1.128% |
| anonfolio-v9 |  -0.013% |   0.442% |   0.107% |   1.788% |

There is no measurable difference on M2, but altra has a slow down in v8
which is fixed in v9 by moving the THP order check to be inline within
thp_vma_allowable_orders(), as suggested by David.


This patch (of 10):

In preparation for the introduction of anonymous multi-size THP, we would
like to be able to split them when they have unmapped subpages, in order
to free those unused pages under memory pressure.  So remove the
artificial requirement that the large folio needed to be at least
PMD-sized.

Link: https://lkml.kernel.org/r/20231207161211.2374093-1-ryan.roberts@arm.com
Link: https://lkml.kernel.org/r/20231207161211.2374093-2-ryan.roberts@arm.com
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: Yu Zhao <yuzhao@google.com>
Reviewed-by: Yin Fengwei <fengwei.yin@intel.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Barry Song <v-songbaohua@oppo.com>
Tested-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Tested-by: John Hubbard <jhubbard@nvidia.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Itaru Kitayama <itaru.kitayama@gmail.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
ColinIanKing pushed a commit that referenced this pull request Dec 15, 2023
Releasing the `priv->lock` while iterating the `priv->multicast_list` in
`ipoib_mcast_join_task()` opens a window for `ipoib_mcast_dev_flush()` to
remove the items while in the middle of iteration. If the mcast is removed
while the lock was dropped, the for loop spins forever resulting in a hard
lockup (as was reported on RHEL 4.18.0-372.75.1.el8_6 kernel):

    Task A (kworker/u72:2 below)       | Task B (kworker/u72:0 below)
    -----------------------------------+-----------------------------------
    ipoib_mcast_join_task(work)        | ipoib_ib_dev_flush_light(work)
      spin_lock_irq(&priv->lock)       | __ipoib_ib_dev_flush(priv, ...)
      list_for_each_entry(mcast,       | ipoib_mcast_dev_flush(dev = priv->dev)
          &priv->multicast_list, list) |
        ipoib_mcast_join(dev, mcast)   |
          spin_unlock_irq(&priv->lock) |
                                       |   spin_lock_irqsave(&priv->lock, flags)
                                       |   list_for_each_entry_safe(mcast, tmcast,
                                       |                  &priv->multicast_list, list)
                                       |     list_del(&mcast->list);
                                       |     list_add_tail(&mcast->list, &remove_list)
                                       |   spin_unlock_irqrestore(&priv->lock, flags)
          spin_lock_irq(&priv->lock)   |
                                       |   ipoib_mcast_remove_list(&remove_list)
   (Here, `mcast` is no longer on the  |     list_for_each_entry_safe(mcast, tmcast,
    `priv->multicast_list` and we keep |                            remove_list, list)
    spinning on the `remove_list` of   |  >>>  wait_for_completion(&mcast->done)
    the other thread which is blocked  |
    and the list is still valid on     |
    it's stack.)

Fix this by keeping the lock held and changing to GFP_ATOMIC to prevent
eventual sleeps.
Unfortunately we could not reproduce the lockup and confirm this fix but
based on the code review I think this fix should address such lockups.

crash> bc 31
PID: 747      TASK: ff1c6a1a007e8000  CPU: 31   COMMAND: "kworker/u72:2"
--
    [exception RIP: ipoib_mcast_join_task+0x1b1]
    RIP: ffffffffc0944ac1  RSP: ff646f199a8c7e00  RFLAGS: 00000002
    RAX: 0000000000000000  RBX: ff1c6a1a04dc82f8  RCX: 0000000000000000
                                  work (&priv->mcast_task{,.work})
    RDX: ff1c6a192d60ac68  RSI: 0000000000000286  RDI: ff1c6a1a04dc8000
           &mcast->list
    RBP: ff646f199a8c7e90   R8: ff1c699980019420   R9: ff1c6a1920c9a000
    R10: ff646f199a8c7e00  R11: ff1c6a191a7d9800  R12: ff1c6a192d60ac00
                                                         mcast
    R13: ff1c6a1d82200000  R14: ff1c6a1a04dc8000  R15: ff1c6a1a04dc82d8
           dev                    priv (&priv->lock)     &priv->multicast_list (aka head)
    ORIG_RAX: ffffffffffffffff  CS: 0010  SS: 0018
--- <NMI exception stack> ---
 #5 [ff646f199a8c7e00] ipoib_mcast_join_task+0x1b1 at ffffffffc0944ac1 [ib_ipoib]
 #6 [ff646f199a8c7e98] process_one_work+0x1a7 at ffffffff9bf10967

crash> rx ff646f199a8c7e68
ff646f199a8c7e68:  ff1c6a1a04dc82f8 <<< work = &priv->mcast_task.work

crash> list -hO ipoib_dev_priv.multicast_list ff1c6a1a04dc8000
(empty)

crash> ipoib_dev_priv.mcast_task.work.func,mcast_mutex.owner.counter ff1c6a1a04dc8000
  mcast_task.work.func = 0xffffffffc0944910 <ipoib_mcast_join_task>,
  mcast_mutex.owner.counter = 0xff1c69998efec000

crash> b 8
PID: 8        TASK: ff1c69998efec000  CPU: 33   COMMAND: "kworker/u72:0"
--
 #3 [ff646f1980153d50] wait_for_completion+0x96 at ffffffff9c7d7646
 #4 [ff646f1980153d90] ipoib_mcast_remove_list+0x56 at ffffffffc0944dc6 [ib_ipoib]
 #5 [ff646f1980153de8] ipoib_mcast_dev_flush+0x1a7 at ffffffffc09455a7 [ib_ipoib]
 #6 [ff646f1980153e58] __ipoib_ib_dev_flush+0x1a4 at ffffffffc09431a4 [ib_ipoib]
 #7 [ff646f1980153e98] process_one_work+0x1a7 at ffffffff9bf10967

crash> rx ff646f1980153e68
ff646f1980153e68:  ff1c6a1a04dc83f0 <<< work = &priv->flush_light

crash> ipoib_dev_priv.flush_light.func,broadcast ff1c6a1a04dc8000
  flush_light.func = 0xffffffffc0943820 <ipoib_ib_dev_flush_light>,
  broadcast = 0x0,

The mcast(s) on the `remove_list` (the remaining part of the ex `priv->multicast_list`):

crash> list -s ipoib_mcast.done.done ipoib_mcast.list -H ff646f1980153e10 | paste - -
ff1c6a192bd0c200          done.done = 0x0,
ff1c6a192d60ac00          done.done = 0x0,

Reported-by: Yuya Fujita-bishamonten <fj-lsoft-rh-driver@dl.jp.fujitsu.com>
Signed-off-by: Daniel Vacek <neelx@redhat.com>
Link: https://lore.kernel.org/all/20231212080746.1528802-1-neelx@redhat.com
Signed-off-by: Leon Romanovsky <leon@kernel.org>
ColinIanKing pushed a commit that referenced this pull request Dec 15, 2023
virtio-gpu kernel driver reports 16 for count_crtcs
which exceeds IGT_MAX_PIPES set to 8 in igt-gpu-tools.
This results in below memory corruption,

 malloc(): corrupted top size
 Received signal SIGABRT.
 Stack trace:
  #0 [fatal_sig_handler+0x17b]
  #1 [__sigaction+0x40]
  #2 [pthread_key_delete+0x14c]
  #3 [gsignal+0x12]
  #4 [abort+0xd3]
  #5 [__fsetlocking+0x290]
  #6 [timer_settime+0x37a]
  #7 [__default_morecore+0x1f1b]
  #8 [__libc_calloc+0x161]
  #9 [drmModeGetPlaneResources+0x44]
  #10 [igt_display_require+0x194]
  #11 [__igt_unique____real_main1356+0x93c]
  #12 [main+0x3f]
  #13 [__libc_init_first+0x8a]
  #14 [__libc_start_main+0x85]
  #15 [_start+0x21]
 
This is fixed in igt-gpu-tools by increasing IGT_MAX_PIPES to 16.  
https://patchwork.freedesktop.org/series/126327/
 
Uprev IGT to include the patches which fixes this issue.

Acked-by: Helen Koike <helen.koike@collabora.com>
Signed-off-by: Vignesh Raman <vignesh.raman@collabora.com>
Signed-off-by: Helen Koike <helen.koike@collabora.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20231207091831.660054-9-vignesh.raman@collabora.com
ColinIanKing pushed a commit that referenced this pull request Dec 15, 2023
Patch series "Multi-size THP for anonymous memory", v9.

A series to implement multi-size THP (mTHP) for anonymous memory
(previously called "small-sized THP" and "large anonymous folios").

The objective of this is to improve performance by allocating larger
chunks of memory during anonymous page faults:

1) Since SW (the kernel) is dealing with larger chunks of memory than base
   pages, there are efficiency savings to be had; fewer page faults, batched PTE
   and RMAP manipulation, reduced lru list, etc. In short, we reduce kernel
   overhead. This should benefit all architectures.
2) Since we are now mapping physically contiguous chunks of memory, we can take
   advantage of HW TLB compression techniques. A reduction in TLB pressure
   speeds up kernel and user space. arm64 systems have 2 mechanisms to coalesce
   TLB entries; "the contiguous bit" (architectural) and HPA (uarch).

This version incorporates David's feedback on the core patches (#3, #4)
and adds some RB and TB tags (see change log for details).

By default, the existing behaviour (and performance) is maintained.  The
user must explicitly enable multi-size THP to see the performance benefit.
This is done via a new sysfs interface (as recommended by David
Hildenbrand - thanks to David for the suggestion)!  This interface is
inspired by the existing per-hugepage-size sysfs interface used by
hugetlb, provides full backwards compatibility with the existing PMD-size
THP interface, and provides a base for future extensibility.  See [9] for
detailed discussion of the interface.

This series is based on mm-unstable (715b67adf4c8).


Prerequisites
=============

I'm removing this section on the basis that I don't believe what we were
previously calling prerequisites are really prerequisites anymore.  We
originally defined them when mTHP was a compile-time feature.  There is
now a runtime control to opt-in to mTHP; when disabled, correctness and
performance are as before.  When enabled, the code is still
correct/robust, but in the absence of the one remaining item (compaction)
there may be a performance impact in some corners.  See the old list in
the v8 cover letter at [8].  And a longer explanation of my thinking here
[10].

SUMMARY: I don't think we should hold this series up, waiting for the
items on the prerequisites list.  I believe this series should be ready
now so hopefully can be added to mm-unstable for some testing, then
fingers crossed for v6.8.


Testing
=======

The series includes patches for mm selftests to enlighten the cow and
khugepaged tests to explicitly test with multi-size THP, in the same way
that PMD-sized THP is tested.  The new tests all pass, and no regressions
are observed in the mm selftest suite.  I've also run my usual kernel
compilation and java script benchmarks without any issues.

Refer to my performance numbers posted with v6 [6].  (These are for
multi-size THP only - they do not include the arm64 contpte follow-on
series).

John Hubbard at Nvidia has indicated dramatic 10x performance improvements
for some workloads at [11].  (Observed using v6 of this series as well as
the arm64 contpte series).

Kefeng Wang at Huawei has also indicated he sees improvements at [12] although
there are some latency regressions also.

I've also checked that there is no regression in the write fault path when
mTHP is disabled using a microbenchmark.  I ran it for a baseline kernel,
as well as v8 and v9.  I repeated on Ampere Altra (bare metal) and Apple
M2 (VM):

|              |        m2 vm        |        altra        |
|--------------|---------------------|---------------------|
| kernel       |     mean |  std_rel |     mean |  std_rel |
|--------------|----------|----------|----------|----------|
| baseline     |   0.000% |   0.341% |   0.000% |   3.581% |
| anonfolio-v8 |   0.005% |   0.272% |   5.068% |   1.128% |
| anonfolio-v9 |  -0.013% |   0.442% |   0.107% |   1.788% |

There is no measurable difference on M2, but altra has a slow down in v8
which is fixed in v9 by moving the THP order check to be inline within
thp_vma_allowable_orders(), as suggested by David.


This patch (of 10):

In preparation for the introduction of anonymous multi-size THP, we would
like to be able to split them when they have unmapped subpages, in order
to free those unused pages under memory pressure.  So remove the
artificial requirement that the large folio needed to be at least
PMD-sized.

Link: https://lkml.kernel.org/r/20231207161211.2374093-1-ryan.roberts@arm.com
Link: https://lkml.kernel.org/r/20231207161211.2374093-2-ryan.roberts@arm.com
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: Yu Zhao <yuzhao@google.com>
Reviewed-by: Yin Fengwei <fengwei.yin@intel.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Barry Song <v-songbaohua@oppo.com>
Tested-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Tested-by: John Hubbard <jhubbard@nvidia.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Itaru Kitayama <itaru.kitayama@gmail.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
ColinIanKing pushed a commit that referenced this pull request Dec 19, 2023
Petr Machata says:

====================
mlxsw: CFF flood mode: NVE underlay configuration

Recently, support for CFF flood mode (for Compressed FID Flooding) was
added to the mlxsw driver. The most recent patchset has a detailed coverage
of what CFF is and what has changed and how:

    https://lore.kernel.org/netdev/cover.1701183891.git.petrm@nvidia.com/

In CFF flood mode, each FID allocates a handful (in our implementation two
or three) consecutive PGT entries. One entry holds the flood vector for
unknown-UC traffic, one for MC, one for BC.

To determine how to look up flood vectors, the CFF flood mode uses a
concept of flood profiles, which are IDs that reference mappings from
traffic types to offsets. In the case of CFF flood mode, the offset in
question is applied to the PGT address configured at a FID. The same
mechanism is used by NVE underlay for flooding. Again the profile ID and
the traffic type determine the offset to apply, this time to KVD address
used to look up flooding entries. Since mlxsw configures NVE underlay flood
the same regardless of traffic type, only one offset was ever needed: the
zero, which is the default, and thus no explicit configuration was needed.

Now that CFF uses profiles as well, it would be better to configure the
profile used by NVE explicitly, to make the configuration visible in the
source code.

In this patchset, add the register support (in patch #1), add a new traffic
type to refer to "any traffic at all" (in patch #2) and finally configure
the NVE profile explicitly for FIDs (in patch #3).

So far, the implicitly configured flood profile was the ID 0. With this
patchset, it changes to 3, leaving the 0 free to allow us to spot missed
configuration.
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
ColinIanKing pushed a commit that referenced this pull request Dec 19, 2023
syzbot found a potential circular dependency leading to a deadlock:
    -> #3 (&hdev->req_lock){+.+.}-{3:3}:
    __mutex_lock_common+0x1b6/0x1bc2 kernel/locking/mutex.c:599
    __mutex_lock kernel/locking/mutex.c:732 [inline]
    mutex_lock_nested+0x17/0x1c kernel/locking/mutex.c:784
    hci_dev_do_close+0x3f/0x9f net/bluetooth/hci_core.c:551
    hci_rfkill_set_block+0x130/0x1ac net/bluetooth/hci_core.c:935
    rfkill_set_block+0x1e6/0x3b8 net/rfkill/core.c:345
    rfkill_fop_write+0x2d8/0x672 net/rfkill/core.c:1274
    vfs_write+0x277/0xcf5 fs/read_write.c:594
    ksys_write+0x19b/0x2bd fs/read_write.c:650
    do_syscall_x64 arch/x86/entry/common.c:55 [inline]
    do_syscall_64+0x51/0xba arch/x86/entry/common.c:93
    entry_SYSCALL_64_after_hwframe+0x61/0xcb

    -> #2 (rfkill_global_mutex){+.+.}-{3:3}:
    __mutex_lock_common+0x1b6/0x1bc2 kernel/locking/mutex.c:599
    __mutex_lock kernel/locking/mutex.c:732 [inline]
    mutex_lock_nested+0x17/0x1c kernel/locking/mutex.c:784
    rfkill_register+0x30/0x7e3 net/rfkill/core.c:1045
    hci_register_dev+0x48f/0x96d net/bluetooth/hci_core.c:2622
    __vhci_create_device drivers/bluetooth/hci_vhci.c:341 [inline]
    vhci_create_device+0x3ad/0x68f drivers/bluetooth/hci_vhci.c:374
    vhci_get_user drivers/bluetooth/hci_vhci.c:431 [inline]
    vhci_write+0x37b/0x429 drivers/bluetooth/hci_vhci.c:511
    call_write_iter include/linux/fs.h:2109 [inline]
    new_sync_write fs/read_write.c:509 [inline]
    vfs_write+0xaa8/0xcf5 fs/read_write.c:596
    ksys_write+0x19b/0x2bd fs/read_write.c:650
    do_syscall_x64 arch/x86/entry/common.c:55 [inline]
    do_syscall_64+0x51/0xba arch/x86/entry/common.c:93
    entry_SYSCALL_64_after_hwframe+0x61/0xcb

    -> #1 (&data->open_mutex){+.+.}-{3:3}:
    __mutex_lock_common+0x1b6/0x1bc2 kernel/locking/mutex.c:599
    __mutex_lock kernel/locking/mutex.c:732 [inline]
    mutex_lock_nested+0x17/0x1c kernel/locking/mutex.c:784
    vhci_send_frame+0x68/0x9c drivers/bluetooth/hci_vhci.c:75
    hci_send_frame+0x1cc/0x2ff net/bluetooth/hci_core.c:2989
    hci_sched_acl_pkt net/bluetooth/hci_core.c:3498 [inline]
    hci_sched_acl net/bluetooth/hci_core.c:3583 [inline]
    hci_tx_work+0xb94/0x1a60 net/bluetooth/hci_core.c:3654
    process_one_work+0x901/0xfb8 kernel/workqueue.c:2310
    worker_thread+0xa67/0x1003 kernel/workqueue.c:2457
    kthread+0x36a/0x430 kernel/kthread.c:319
    ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:298

    -> #0 ((work_completion)(&hdev->tx_work)){+.+.}-{0:0}:
    check_prev_add kernel/locking/lockdep.c:3053 [inline]
    check_prevs_add kernel/locking/lockdep.c:3172 [inline]
    validate_chain kernel/locking/lockdep.c:3787 [inline]
    __lock_acquire+0x2d32/0x77fa kernel/locking/lockdep.c:5011
    lock_acquire+0x273/0x4d5 kernel/locking/lockdep.c:5622
    __flush_work+0xee/0x19f kernel/workqueue.c:3090
    hci_dev_close_sync+0x32f/0x1113 net/bluetooth/hci_sync.c:4352
    hci_dev_do_close+0x47/0x9f net/bluetooth/hci_core.c:553
    hci_rfkill_set_block+0x130/0x1ac net/bluetooth/hci_core.c:935
    rfkill_set_block+0x1e6/0x3b8 net/rfkill/core.c:345
    rfkill_fop_write+0x2d8/0x672 net/rfkill/core.c:1274
    vfs_write+0x277/0xcf5 fs/read_write.c:594
    ksys_write+0x19b/0x2bd fs/read_write.c:650
    do_syscall_x64 arch/x86/entry/common.c:55 [inline]
    do_syscall_64+0x51/0xba arch/x86/entry/common.c:93
    entry_SYSCALL_64_after_hwframe+0x61/0xcb

This change removes the need for acquiring the open_mutex in
vhci_send_frame, thus eliminating the potential deadlock while
maintaining the required packet ordering.

Fixes: 92d4abd ("Bluetooth: vhci: Fix race when opening vhci device")
Signed-off-by: Ying Hsu <yinghsu@chromium.org>
Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com>
ColinIanKing pushed a commit that referenced this pull request Dec 19, 2023
Patch series "Multi-size THP for anonymous memory", v9.

A series to implement multi-size THP (mTHP) for anonymous memory
(previously called "small-sized THP" and "large anonymous folios").

The objective of this is to improve performance by allocating larger
chunks of memory during anonymous page faults:

1) Since SW (the kernel) is dealing with larger chunks of memory than base
   pages, there are efficiency savings to be had; fewer page faults, batched PTE
   and RMAP manipulation, reduced lru list, etc. In short, we reduce kernel
   overhead. This should benefit all architectures.
2) Since we are now mapping physically contiguous chunks of memory, we can take
   advantage of HW TLB compression techniques. A reduction in TLB pressure
   speeds up kernel and user space. arm64 systems have 2 mechanisms to coalesce
   TLB entries; "the contiguous bit" (architectural) and HPA (uarch).

This version incorporates David's feedback on the core patches (#3, #4)
and adds some RB and TB tags (see change log for details).

By default, the existing behaviour (and performance) is maintained.  The
user must explicitly enable multi-size THP to see the performance benefit.
This is done via a new sysfs interface (as recommended by David
Hildenbrand - thanks to David for the suggestion)!  This interface is
inspired by the existing per-hugepage-size sysfs interface used by
hugetlb, provides full backwards compatibility with the existing PMD-size
THP interface, and provides a base for future extensibility.  See [9] for
detailed discussion of the interface.

This series is based on mm-unstable (715b67adf4c8).


Prerequisites
=============

I'm removing this section on the basis that I don't believe what we were
previously calling prerequisites are really prerequisites anymore.  We
originally defined them when mTHP was a compile-time feature.  There is
now a runtime control to opt-in to mTHP; when disabled, correctness and
performance are as before.  When enabled, the code is still
correct/robust, but in the absence of the one remaining item (compaction)
there may be a performance impact in some corners.  See the old list in
the v8 cover letter at [8].  And a longer explanation of my thinking here
[10].

SUMMARY: I don't think we should hold this series up, waiting for the
items on the prerequisites list.  I believe this series should be ready
now so hopefully can be added to mm-unstable for some testing, then
fingers crossed for v6.8.


Testing
=======

The series includes patches for mm selftests to enlighten the cow and
khugepaged tests to explicitly test with multi-size THP, in the same way
that PMD-sized THP is tested.  The new tests all pass, and no regressions
are observed in the mm selftest suite.  I've also run my usual kernel
compilation and java script benchmarks without any issues.

Refer to my performance numbers posted with v6 [6].  (These are for
multi-size THP only - they do not include the arm64 contpte follow-on
series).

John Hubbard at Nvidia has indicated dramatic 10x performance improvements
for some workloads at [11].  (Observed using v6 of this series as well as
the arm64 contpte series).

Kefeng Wang at Huawei has also indicated he sees improvements at [12] although
there are some latency regressions also.

I've also checked that there is no regression in the write fault path when
mTHP is disabled using a microbenchmark.  I ran it for a baseline kernel,
as well as v8 and v9.  I repeated on Ampere Altra (bare metal) and Apple
M2 (VM):

|              |        m2 vm        |        altra        |
|--------------|---------------------|---------------------|
| kernel       |     mean |  std_rel |     mean |  std_rel |
|--------------|----------|----------|----------|----------|
| baseline     |   0.000% |   0.341% |   0.000% |   3.581% |
| anonfolio-v8 |   0.005% |   0.272% |   5.068% |   1.128% |
| anonfolio-v9 |  -0.013% |   0.442% |   0.107% |   1.788% |

There is no measurable difference on M2, but altra has a slow down in v8
which is fixed in v9 by moving the THP order check to be inline within
thp_vma_allowable_orders(), as suggested by David.


This patch (of 10):

In preparation for the introduction of anonymous multi-size THP, we would
like to be able to split them when they have unmapped subpages, in order
to free those unused pages under memory pressure.  So remove the
artificial requirement that the large folio needed to be at least
PMD-sized.

Link: https://lkml.kernel.org/r/20231207161211.2374093-1-ryan.roberts@arm.com
Link: https://lkml.kernel.org/r/20231207161211.2374093-2-ryan.roberts@arm.com
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: Yu Zhao <yuzhao@google.com>
Reviewed-by: Yin Fengwei <fengwei.yin@intel.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Barry Song <v-songbaohua@oppo.com>
Tested-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Tested-by: John Hubbard <jhubbard@nvidia.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Itaru Kitayama <itaru.kitayama@gmail.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
ColinIanKing pushed a commit that referenced this pull request Dec 19, 2023
Calling led_trigger_register() when attaching a PHY located on an SFP
module potentially (and practically) leads into a deadlock.
Fix this by not calling led_trigger_register() for PHYs localted on SFP
modules as such modules actually never got any LEDs.

======================================================
WARNING: possible circular locking dependency detected
6.7.0-rc4-next-20231208+ #0 Tainted: G           O
------------------------------------------------------
kworker/u8:2/43 is trying to acquire lock:
ffffffc08108c4e8 (triggers_list_lock){++++}-{3:3}, at: led_trigger_register+0x4c/0x1a8

but task is already holding lock:
ffffff80c5c6f318 (&sfp->sm_mutex){+.+.}-{3:3}, at: cleanup_module+0x2ba8/0x3120 [sfp]

which lock already depends on the new lock.

the existing dependency chain (in reverse order) is:

-> #3 (&sfp->sm_mutex){+.+.}-{3:3}:
       __mutex_lock+0x88/0x7a0
       mutex_lock_nested+0x20/0x28
       cleanup_module+0x2ae0/0x3120 [sfp]
       sfp_register_bus+0x5c/0x9c
       sfp_register_socket+0x48/0xd4
       cleanup_module+0x271c/0x3120 [sfp]
       platform_probe+0x64/0xb8
       really_probe+0x17c/0x3c0
       __driver_probe_device+0x78/0x164
       driver_probe_device+0x3c/0xd4
       __driver_attach+0xec/0x1f0
       bus_for_each_dev+0x60/0xa0
       driver_attach+0x20/0x28
       bus_add_driver+0x108/0x208
       driver_register+0x5c/0x118
       __platform_driver_register+0x24/0x2c
       init_module+0x28/0xa7c [sfp]
       do_one_initcall+0x70/0x2ec
       do_init_module+0x54/0x1e4
       load_module+0x1b78/0x1c8c
       __do_sys_init_module+0x1bc/0x2cc
       __arm64_sys_init_module+0x18/0x20
       invoke_syscall.constprop.0+0x4c/0xdc
       do_el0_svc+0x3c/0xbc
       el0_svc+0x34/0x80
       el0t_64_sync_handler+0xf8/0x124
       el0t_64_sync+0x150/0x154

-> #2 (rtnl_mutex){+.+.}-{3:3}:
       __mutex_lock+0x88/0x7a0
       mutex_lock_nested+0x20/0x28
       rtnl_lock+0x18/0x20
       set_device_name+0x30/0x130
       netdev_trig_activate+0x13c/0x1ac
       led_trigger_set+0x118/0x234
       led_trigger_write+0x104/0x17c
       sysfs_kf_bin_write+0x64/0x80
       kernfs_fop_write_iter+0x128/0x1b4
       vfs_write+0x178/0x2a4
       ksys_write+0x58/0xd4
       __arm64_sys_write+0x18/0x20
       invoke_syscall.constprop.0+0x4c/0xdc
       do_el0_svc+0x3c/0xbc
       el0_svc+0x34/0x80
       el0t_64_sync_handler+0xf8/0x124
       el0t_64_sync+0x150/0x154

-> #1 (&led_cdev->trigger_lock){++++}-{3:3}:
       down_write+0x4c/0x13c
       led_trigger_write+0xf8/0x17c
       sysfs_kf_bin_write+0x64/0x80
       kernfs_fop_write_iter+0x128/0x1b4
       vfs_write+0x178/0x2a4
       ksys_write+0x58/0xd4
       __arm64_sys_write+0x18/0x20
       invoke_syscall.constprop.0+0x4c/0xdc
       do_el0_svc+0x3c/0xbc
       el0_svc+0x34/0x80
       el0t_64_sync_handler+0xf8/0x124
       el0t_64_sync+0x150/0x154

-> #0 (triggers_list_lock){++++}-{3:3}:
       __lock_acquire+0x12a0/0x2014
       lock_acquire+0x100/0x2ac
       down_write+0x4c/0x13c
       led_trigger_register+0x4c/0x1a8
       phy_led_triggers_register+0x9c/0x214
       phy_attach_direct+0x154/0x36c
       phylink_attach_phy+0x30/0x60
       phylink_sfp_connect_phy+0x140/0x510
       sfp_add_phy+0x34/0x50
       init_module+0x15c/0xa7c [sfp]
       cleanup_module+0x1d94/0x3120 [sfp]
       cleanup_module+0x2bb4/0x3120 [sfp]
       process_one_work+0x1f8/0x4ec
       worker_thread+0x1e8/0x3d8
       kthread+0x104/0x110
       ret_from_fork+0x10/0x20

other info that might help us debug this:

Chain exists of:
  triggers_list_lock --> rtnl_mutex --> &sfp->sm_mutex

 Possible unsafe locking scenario:

       CPU0                    CPU1
       ----                    ----
  lock(&sfp->sm_mutex);
                               lock(rtnl_mutex);
                               lock(&sfp->sm_mutex);
  lock(triggers_list_lock);

 *** DEADLOCK ***

4 locks held by kworker/u8:2/43:
 #0: ffffff80c000f938 ((wq_completion)events_power_efficient){+.+.}-{0:0}, at: process_one_work+0x150/0x4ec
 #1: ffffffc08214bde8 ((work_completion)(&(&sfp->timeout)->work)){+.+.}-{0:0}, at: process_one_work+0x150/0x4ec
 #2: ffffffc0810902f8 (rtnl_mutex){+.+.}-{3:3}, at: rtnl_lock+0x18/0x20
 #3: ffffff80c5c6f318 (&sfp->sm_mutex){+.+.}-{3:3}, at: cleanup_module+0x2ba8/0x3120 [sfp]

stack backtrace:
CPU: 0 PID: 43 Comm: kworker/u8:2 Tainted: G           O       6.7.0-rc4-next-20231208+ #0
Hardware name: Bananapi BPI-R4 (DT)
Workqueue: events_power_efficient cleanup_module [sfp]
Call trace:
 dump_backtrace+0xa8/0x10c
 show_stack+0x14/0x1c
 dump_stack_lvl+0x5c/0xa0
 dump_stack+0x14/0x1c
 print_circular_bug+0x328/0x430
 check_noncircular+0x124/0x134
 __lock_acquire+0x12a0/0x2014
 lock_acquire+0x100/0x2ac
 down_write+0x4c/0x13c
 led_trigger_register+0x4c/0x1a8
 phy_led_triggers_register+0x9c/0x214
 phy_attach_direct+0x154/0x36c
 phylink_attach_phy+0x30/0x60
 phylink_sfp_connect_phy+0x140/0x510
 sfp_add_phy+0x34/0x50
 init_module+0x15c/0xa7c [sfp]
 cleanup_module+0x1d94/0x3120 [sfp]
 cleanup_module+0x2bb4/0x3120 [sfp]
 process_one_work+0x1f8/0x4ec
 worker_thread+0x1e8/0x3d8
 kthread+0x104/0x110
 ret_from_fork+0x10/0x20

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Fixes: 01e5b72 ("net: phy: Add a binding for PHY LEDs")
Link: https://lore.kernel.org/r/102a9dce38bdf00215735d04cd4704458273ad9c.1702339354.git.daniel@makrotopia.org
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
ColinIanKing pushed a commit that referenced this pull request Dec 20, 2023
Jiri Pirko says:

====================
devlink: introduce notifications filtering

From: Jiri Pirko <jiri@nvidia.com>

Currently the user listening on a socket for devlink notifications
gets always all messages for all existing devlink instances and objects,
even if he is interested only in one of those. That may cause
unnecessary overhead on setups with thousands of instances present.

User is currently able to narrow down the devlink objects replies
to dump commands by specifying select attributes.

Allow similar approach for notifications providing user a new
notify-filter-set command to select attributes with values
the notification message has to match. In that case, it is delivered
to the socket.

Note that the filtering is done per-socket, so multiple users may
specify different selection of attributes with values.

This patchset initially introduces support for following attributes:
DEVLINK_ATTR_BUS_NAME
DEVLINK_ATTR_DEV_NAME
DEVLINK_ATTR_PORT_INDEX

Patches #1 - #4 are preparations in devlink code, patch #3 is
                an optimization done on the way.
Patches #5 - #7 are preparations in netlink and generic netlink code.
Patch #8 is the main one in this set implementing of
         the notify-filter-set command and the actual
         per-socket filtering.
Patch #9 extends the infrastructure allowing to filter according
         to a port index.

Example:
$ devlink mon port pci/0000:08:00.0/32768
[port,new] pci/0000:08:00.0/32768: type notset flavour pcisf controller 0 pfnum 0 sfnum 107 splittable false
  function:
    hw_addr 00:00:00:00:00:00 state inactive opstate detached roce enable
[port,new] pci/0000:08:00.0/32768: type eth flavour pcisf controller 0 pfnum 0 sfnum 107 splittable false
  function:
    hw_addr 00:00:00:00:00:00 state inactive opstate detached roce enable
[port,new] pci/0000:08:00.0/32768: type eth netdev eth3 flavour pcisf controller 0 pfnum 0 sfnum 107 splittable false
  function:
    hw_addr 00:00:00:00:00:00 state inactive opstate detached roce enable
[port,new] pci/0000:08:00.0/32768: type eth netdev eth3 flavour pcisf controller 0 pfnum 0 sfnum 107 splittable false
  function:
    hw_addr 00:00:00:00:00:00 state inactive opstate detached roce enable
[port,new] pci/0000:08:00.0/32768: type eth flavour pcisf controller 0 pfnum 0 sfnum 107 splittable false
  function:
    hw_addr 00:00:00:00:00:00 state inactive opstate detached roce enable
[port,new] pci/0000:08:00.0/32768: type notset flavour pcisf controller 0 pfnum 0 sfnum 107 splittable false
  function:
    hw_addr 00:00:00:00:00:00 state inactive opstate detached roce enable
[port,del] pci/0000:08:00.0/32768: type notset flavour pcisf controller 0 pfnum 0 sfnum 107 splittable false
  function:
    hw_addr 00:00:00:00:00:00 state inactive opstate detached roce enable
====================

Link: https://lore.kernel.org/r/20231216123001.1293639-1-jiri@resnulli.us
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
ColinIanKing pushed a commit that referenced this pull request Sep 11, 2025
…ockup

Since we use 16-bit precision, the raw data will undergo integer division,
which may sometimes result in data loss.  This can lead to slightly
inaccurate CPU utilization calculations.  Under normal circumstances, this
isn't an issue.  However, when CPU utilization reaches 100%, the
calculated result might exceed 100%.  For example, with raw data like the
following:

sample_period 400000134 new_stat 83648414036 old_stat 83247417494

sample_period=400000134/2^24=23
new_stat=83648414036/2^24=4985
old_stat=83247417494/2^24=4961
util=105%

Below log will output:

CPU#3 Utilization every 0s during lockup:
    #1:   0% system,          0% softirq,   105% hardirq,     0% idle
    #2:   0% system,          0% softirq,   105% hardirq,     0% idle
    #3:   0% system,          0% softirq,   100% hardirq,     0% idle
    #4:   0% system,          0% softirq,   105% hardirq,     0% idle
    #5:   0% system,          0% softirq,   105% hardirq,     0% idle

To avoid confusion, we enforce a 100% display cap when calculations exceed
this threshold.

We also round to the nearest multiple of 16.8 milliseconds to improve the
accuracy.

Link: https://lkml.kernel.org/r/20250812082510.32291-1-yaozhenguo@jd.com
Signed-off-by: ZhenguoYao <yaozhenguo1@gmail.com>
Cc: Bitao Hu <yaoma@linux.alibaba.com>
Cc: Li Huafei <lihuafei1@huawei.com>
Cc: Max Kellermann <max.kellermann@ionos.com>
Cc: Thomas Gleinxer <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
ColinIanKing pushed a commit that referenced this pull request Sep 12, 2025
…ockup

Since we use 16-bit precision, the raw data will undergo integer division,
which may sometimes result in data loss.  This can lead to slightly
inaccurate CPU utilization calculations.  Under normal circumstances, this
isn't an issue.  However, when CPU utilization reaches 100%, the
calculated result might exceed 100%.  For example, with raw data like the
following:

sample_period 400000134 new_stat 83648414036 old_stat 83247417494

sample_period=400000134/2^24=23
new_stat=83648414036/2^24=4985
old_stat=83247417494/2^24=4961
util=105%

Below log will output:

CPU#3 Utilization every 0s during lockup:
    #1:   0% system,          0% softirq,   105% hardirq,     0% idle
    #2:   0% system,          0% softirq,   105% hardirq,     0% idle
    #3:   0% system,          0% softirq,   100% hardirq,     0% idle
    #4:   0% system,          0% softirq,   105% hardirq,     0% idle
    #5:   0% system,          0% softirq,   105% hardirq,     0% idle

To avoid confusion, we enforce a 100% display cap when calculations exceed
this threshold.

We also round to the nearest multiple of 16.8 milliseconds to improve the
accuracy.

Link: https://lkml.kernel.org/r/20250812082510.32291-1-yaozhenguo@jd.com
Signed-off-by: ZhenguoYao <yaozhenguo1@gmail.com>
Cc: Bitao Hu <yaoma@linux.alibaba.com>
Cc: Li Huafei <lihuafei1@huawei.com>
Cc: Max Kellermann <max.kellermann@ionos.com>
Cc: Thomas Gleinxer <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
ColinIanKing pushed a commit that referenced this pull request Sep 12, 2025
Ido Schimmel says:

====================
ipv4: icmp: Fix source IP derivation in presence of VRFs

Align IPv4 with IPv6 and in the presence of VRFs generate ICMP error
messages with a source IP that is derived from the receiving interface
and not from its VRF master. This is especially important when the error
messages are "Time Exceeded" messages as it means that utilities like
traceroute will show an incorrect packet path.

Patches #1-#2 are preparations.

Patch #3 is the actual change.

Patches #4-#7 make small improvements in the existing traceroute test.

Patch #8 extends the traceroute test with VRF test cases for both IPv4
and IPv6.

Changes since v1 [1]:
* Rebase.

[1] https://lore.kernel.org/netdev/20250901083027.183468-1-idosch@nvidia.com/
====================

Link: https://patch.msgid.link/20250908073238.119240-1-idosch@nvidia.com
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
ColinIanKing pushed a commit that referenced this pull request Sep 16, 2025
…lockup

Since we use 16-bit precision, the raw data will undergo integer division,
which may sometimes result in data loss.  This can lead to slightly
inaccurate CPU utilization calculations.  Under normal circumstances, this
isn't an issue.  However, when CPU utilization reaches 100%, the
calculated result might exceed 100%.  For example, with raw data like the
following:

sample_period 400000134 new_stat 83648414036 old_stat 83247417494

sample_period=400000134/2^24=23
new_stat=83648414036/2^24=4985
old_stat=83247417494/2^24=4961
util=105%

Below log will output:

CPU#3 Utilization every 0s during lockup:
    #1:   0% system,          0% softirq,   105% hardirq,     0% idle
    #2:   0% system,          0% softirq,   105% hardirq,     0% idle
    #3:   0% system,          0% softirq,   100% hardirq,     0% idle
    #4:   0% system,          0% softirq,   105% hardirq,     0% idle
    #5:   0% system,          0% softirq,   105% hardirq,     0% idle

To avoid confusion, we enforce a 100% display cap when calculations exceed
this threshold.

We also round to the nearest multiple of 16.8 milliseconds to improve the
accuracy.

[yaozhenguo1@gmail.com: make get_16bit_precision() more accurate, fix comment layout]
  Link: https://lkml.kernel.org/r/20250818081438.40540-1-yaozhenguo@jd.com
Link: https://lkml.kernel.org/r/20250812082510.32291-1-yaozhenguo@jd.com
Signed-off-by: ZhenguoYao <yaozhenguo1@gmail.com>
Cc: Bitao Hu <yaoma@linux.alibaba.com>
Cc: Li Huafei <lihuafei1@huawei.com>
Cc: Max Kellermann <max.kellermann@ionos.com>
Cc: Thomas Gleinxer <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
ColinIanKing pushed a commit that referenced this pull request Sep 17, 2025
This fixes the following UAF caused by not properly locking hdev when
processing HCI_EV_NUM_COMP_PKTS:

BUG: KASAN: slab-use-after-free in hci_conn_tx_dequeue+0x1be/0x220 net/bluetooth/hci_conn.c:3036
Read of size 4 at addr ffff8880740f0940 by task kworker/u11:0/54

CPU: 1 UID: 0 PID: 54 Comm: kworker/u11:0 Not tainted 6.16.0-rc7 #3 PREEMPT(full)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1ubuntu1 04/01/2014
Workqueue: hci1 hci_rx_work
Call Trace:
 <TASK>
 dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120
 print_address_description mm/kasan/report.c:378 [inline]
 print_report+0xca/0x230 mm/kasan/report.c:480
 kasan_report+0x118/0x150 mm/kasan/report.c:593
 hci_conn_tx_dequeue+0x1be/0x220 net/bluetooth/hci_conn.c:3036
 hci_num_comp_pkts_evt+0x1c8/0xa50 net/bluetooth/hci_event.c:4404
 hci_event_func net/bluetooth/hci_event.c:7477 [inline]
 hci_event_packet+0x7e0/0x1200 net/bluetooth/hci_event.c:7531
 hci_rx_work+0x46a/0xe80 net/bluetooth/hci_core.c:4070
 process_one_work kernel/workqueue.c:3238 [inline]
 process_scheduled_works+0xae1/0x17b0 kernel/workqueue.c:3321
 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402
 kthread+0x70e/0x8a0 kernel/kthread.c:464
 ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148
 ret_from_fork_asm+0x1a/0x30 home/kwqcheii/source/fuzzing/kernel/kasan/linux-6.16-rc7/arch/x86/entry/entry_64.S:245
 </TASK>

Allocated by task 54:
 kasan_save_stack mm/kasan/common.c:47 [inline]
 kasan_save_track+0x3e/0x80 mm/kasan/common.c:68
 poison_kmalloc_redzone mm/kasan/common.c:377 [inline]
 __kasan_kmalloc+0x93/0xb0 mm/kasan/common.c:394
 kasan_kmalloc include/linux/kasan.h:260 [inline]
 __kmalloc_cache_noprof+0x230/0x3d0 mm/slub.c:4359
 kmalloc_noprof include/linux/slab.h:905 [inline]
 kzalloc_noprof include/linux/slab.h:1039 [inline]
 __hci_conn_add+0x233/0x1b30 net/bluetooth/hci_conn.c:939
 le_conn_complete_evt+0x3d6/0x1220 net/bluetooth/hci_event.c:5628
 hci_le_enh_conn_complete_evt+0x189/0x470 net/bluetooth/hci_event.c:5794
 hci_event_func net/bluetooth/hci_event.c:7474 [inline]
 hci_event_packet+0x78c/0x1200 net/bluetooth/hci_event.c:7531
 hci_rx_work+0x46a/0xe80 net/bluetooth/hci_core.c:4070
 process_one_work kernel/workqueue.c:3238 [inline]
 process_scheduled_works+0xae1/0x17b0 kernel/workqueue.c:3321
 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402
 kthread+0x70e/0x8a0 kernel/kthread.c:464
 ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148
 ret_from_fork_asm+0x1a/0x30 home/kwqcheii/source/fuzzing/kernel/kasan/linux-6.16-rc7/arch/x86/entry/entry_64.S:245

Freed by task 9572:
 kasan_save_stack mm/kasan/common.c:47 [inline]
 kasan_save_track+0x3e/0x80 mm/kasan/common.c:68
 kasan_save_free_info+0x46/0x50 mm/kasan/generic.c:576
 poison_slab_object mm/kasan/common.c:247 [inline]
 __kasan_slab_free+0x62/0x70 mm/kasan/common.c:264
 kasan_slab_free include/linux/kasan.h:233 [inline]
 slab_free_hook mm/slub.c:2381 [inline]
 slab_free mm/slub.c:4643 [inline]
 kfree+0x18e/0x440 mm/slub.c:4842
 device_release+0x9c/0x1c0
 kobject_cleanup lib/kobject.c:689 [inline]
 kobject_release lib/kobject.c:720 [inline]
 kref_put include/linux/kref.h:65 [inline]
 kobject_put+0x22b/0x480 lib/kobject.c:737
 hci_conn_cleanup net/bluetooth/hci_conn.c:175 [inline]
 hci_conn_del+0x8ff/0xcb0 net/bluetooth/hci_conn.c:1173
 hci_abort_conn_sync+0x5d1/0xdf0 net/bluetooth/hci_sync.c:5689
 hci_cmd_sync_work+0x210/0x3a0 net/bluetooth/hci_sync.c:332
 process_one_work kernel/workqueue.c:3238 [inline]
 process_scheduled_works+0xae1/0x17b0 kernel/workqueue.c:3321
 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402
 kthread+0x70e/0x8a0 kernel/kthread.c:464
 ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148
 ret_from_fork_asm+0x1a/0x30 home/kwqcheii/source/fuzzing/kernel/kasan/linux-6.16-rc7/arch/x86/entry/entry_64.S:245

Fixes: 134f4b3 ("Bluetooth: add support for skb TX SND/COMPLETION timestamping")
Reported-by: Junvyyang, Tencent Zhuque Lab <zhuque@tencent.com>
Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com>
ColinIanKing pushed a commit that referenced this pull request Sep 17, 2025
This fixes the following UFA in hci_acl_create_conn_sync where a
connection still pending is command submission (conn->state == BT_OPEN)
maybe freed, also since this also can happen with the likes of
hci_le_create_conn_sync fix it as well:

BUG: KASAN: slab-use-after-free in hci_acl_create_conn_sync+0x5ef/0x790 net/bluetooth/hci_sync.c:6861
Write of size 2 at addr ffff88805ffcc038 by task kworker/u11:2/9541

CPU: 1 UID: 0 PID: 9541 Comm: kworker/u11:2 Not tainted 6.16.0-rc7 #3 PREEMPT(full)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1ubuntu1 04/01/2014
Workqueue: hci3 hci_cmd_sync_work
Call Trace:
 <TASK>
 dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120
 print_address_description mm/kasan/report.c:378 [inline]
 print_report+0xca/0x230 mm/kasan/report.c:480
 kasan_report+0x118/0x150 mm/kasan/report.c:593
 hci_acl_create_conn_sync+0x5ef/0x790 net/bluetooth/hci_sync.c:6861
 hci_cmd_sync_work+0x210/0x3a0 net/bluetooth/hci_sync.c:332
 process_one_work kernel/workqueue.c:3238 [inline]
 process_scheduled_works+0xae1/0x17b0 kernel/workqueue.c:3321
 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402
 kthread+0x70e/0x8a0 kernel/kthread.c:464
 ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148
 ret_from_fork_asm+0x1a/0x30 home/kwqcheii/source/fuzzing/kernel/kasan/linux-6.16-rc7/arch/x86/entry/entry_64.S:245
 </TASK>

Allocated by task 123736:
 kasan_save_stack mm/kasan/common.c:47 [inline]
 kasan_save_track+0x3e/0x80 mm/kasan/common.c:68
 poison_kmalloc_redzone mm/kasan/common.c:377 [inline]
 __kasan_kmalloc+0x93/0xb0 mm/kasan/common.c:394
 kasan_kmalloc include/linux/kasan.h:260 [inline]
 __kmalloc_cache_noprof+0x230/0x3d0 mm/slub.c:4359
 kmalloc_noprof include/linux/slab.h:905 [inline]
 kzalloc_noprof include/linux/slab.h:1039 [inline]
 __hci_conn_add+0x233/0x1b30 net/bluetooth/hci_conn.c:939
 hci_conn_add_unset net/bluetooth/hci_conn.c:1051 [inline]
 hci_connect_acl+0x16c/0x4e0 net/bluetooth/hci_conn.c:1634
 pair_device+0x418/0xa70 net/bluetooth/mgmt.c:3556
 hci_mgmt_cmd+0x9c9/0xef0 net/bluetooth/hci_sock.c:1719
 hci_sock_sendmsg+0x6ca/0xef0 net/bluetooth/hci_sock.c:1839
 sock_sendmsg_nosec net/socket.c:712 [inline]
 __sock_sendmsg+0x219/0x270 net/socket.c:727
 sock_write_iter+0x258/0x330 net/socket.c:1131
 new_sync_write fs/read_write.c:593 [inline]
 vfs_write+0x54b/0xa90 fs/read_write.c:686
 ksys_write+0x145/0x250 fs/read_write.c:738
 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
 do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94
 entry_SYSCALL_64_after_hwframe+0x77/0x7f

Freed by task 103680:
 kasan_save_stack mm/kasan/common.c:47 [inline]
 kasan_save_track+0x3e/0x80 mm/kasan/common.c:68
 kasan_save_free_info+0x46/0x50 mm/kasan/generic.c:576
 poison_slab_object mm/kasan/common.c:247 [inline]
 __kasan_slab_free+0x62/0x70 mm/kasan/common.c:264
 kasan_slab_free include/linux/kasan.h:233 [inline]
 slab_free_hook mm/slub.c:2381 [inline]
 slab_free mm/slub.c:4643 [inline]
 kfree+0x18e/0x440 mm/slub.c:4842
 device_release+0x9c/0x1c0
 kobject_cleanup lib/kobject.c:689 [inline]
 kobject_release lib/kobject.c:720 [inline]
 kref_put include/linux/kref.h:65 [inline]
 kobject_put+0x22b/0x480 lib/kobject.c:737
 hci_conn_cleanup net/bluetooth/hci_conn.c:175 [inline]
 hci_conn_del+0x8ff/0xcb0 net/bluetooth/hci_conn.c:1173
 hci_conn_complete_evt+0x3c7/0x1040 net/bluetooth/hci_event.c:3199
 hci_event_func net/bluetooth/hci_event.c:7477 [inline]
 hci_event_packet+0x7e0/0x1200 net/bluetooth/hci_event.c:7531
 hci_rx_work+0x46a/0xe80 net/bluetooth/hci_core.c:4070
 process_one_work kernel/workqueue.c:3238 [inline]
 process_scheduled_works+0xae1/0x17b0 kernel/workqueue.c:3321
 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402
 kthread+0x70e/0x8a0 kernel/kthread.c:464
 ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148
 ret_from_fork_asm+0x1a/0x30 home/kwqcheii/source/fuzzing/kernel/kasan/linux-6.16-rc7/arch/x86/entry/entry_64.S:245

Last potentially related work creation:
 kasan_save_stack+0x3e/0x60 mm/kasan/common.c:47
 kasan_record_aux_stack+0xbd/0xd0 mm/kasan/generic.c:548
 insert_work+0x3d/0x330 kernel/workqueue.c:2183
 __queue_work+0xbd9/0xfe0 kernel/workqueue.c:2345
 queue_delayed_work_on+0x18b/0x280 kernel/workqueue.c:2561
 pairing_complete+0x1e7/0x2b0 net/bluetooth/mgmt.c:3451
 pairing_complete_cb+0x1ac/0x230 net/bluetooth/mgmt.c:3487
 hci_connect_cfm include/net/bluetooth/hci_core.h:2064 [inline]
 hci_conn_failed+0x24d/0x310 net/bluetooth/hci_conn.c:1275
 hci_conn_complete_evt+0x3c7/0x1040 net/bluetooth/hci_event.c:3199
 hci_event_func net/bluetooth/hci_event.c:7477 [inline]
 hci_event_packet+0x7e0/0x1200 net/bluetooth/hci_event.c:7531
 hci_rx_work+0x46a/0xe80 net/bluetooth/hci_core.c:4070
 process_one_work kernel/workqueue.c:3238 [inline]
 process_scheduled_works+0xae1/0x17b0 kernel/workqueue.c:3321
 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402
 kthread+0x70e/0x8a0 kernel/kthread.c:464
 ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148
 ret_from_fork_asm+0x1a/0x30 home/kwqcheii/source/fuzzing/kernel/kasan/linux-6.16-rc7/arch/x86/entry/entry_64.S:245

Fixes: aef2aa4 ("Bluetooth: hci_event: Fix creating hci_conn object on error status")
Reported-by: Junvyyang, Tencent Zhuque Lab <zhuque@tencent.com>
Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com>
ColinIanKing pushed a commit that referenced this pull request Sep 18, 2025
…ux/kernel/git/kvmarm/kvmarm into HEAD

KVM/arm64 changes for 6.17, round #3

 - Invalidate nested MMUs upon freeing the PGD to avoid WARNs when
   visiting from an MMU notifier

 - Fixes to the TLB match process and TLB invalidation range for
   managing the VCNR pseudo-TLB

 - Prevent SPE from erroneously profiling guests due to UNKNOWN reset
   values in PMSCR_EL1

 - Fix save/restore of host MDCR_EL2 to account for eagerly programming
   at vcpu_load() on VHE systems

 - Correct lock ordering when dealing with VGIC LPIs, avoiding scenarios
   where an xarray's spinlock was nested with a *raw* spinlock

 - Permit stage-2 read permission aborts which are possible in the case
   of NV depending on the guest hypervisor's stage-2 translation

 - Call raw_spin_unlock() instead of the internal spinlock API

 - Fix parameter ordering when assigning VBAR_EL1
ColinIanKing pushed a commit that referenced this pull request Sep 19, 2025
We check the version of SPE twice, and we'll add one more check in the
next commit so factor out a macro to do this. Change the #3 magic number
to the actual SPE version define (V1p2) to make it more readable.

No functional changes intended.

Tested-by: Leo Yan <leo.yan@arm.com>
Reviewed-by: Leo Yan <leo.yan@arm.com>
Signed-off-by: James Clark <james.clark@linaro.org>
Signed-off-by: Will Deacon <will@kernel.org>
ColinIanKing pushed a commit that referenced this pull request Sep 22, 2025
Don't emulate branch instructions, e.g. CALL/RET/JMP etc., that are
affected by Shadow Stacks and/or Indirect Branch Tracking when said
features are enabled in the guest, as fully emulating CET would require
significant complexity for no practical benefit (KVM shouldn't need to
emulate branch instructions on modern hosts).  Simply doing nothing isn't
an option as that would allow a malicious entity to subvert CET
protections via the emulator.

To detect instructions that are subject to IBT or affect IBT state, use
the existing IsBranch flag along with the source operand type to detect
indirect branches, and the existing NearBranch flag to detect far branches
(which can affect IBT state even if the branch itself is direct).

For Shadow Stacks, explicitly track instructions that directly affect the
current SSP, as KVM's emulator doesn't have existing flags that can be
used to precisely detect such instructions.  Alternatively, the em_xxx()
helpers could directly check for ShadowStack interactions, but using a
dedicated flag is arguably easier to audit, and allows for handling both
IBT and SHSTK in one fell swoop.

Note!  On far transfers, do NOT consult the current privilege level and
instead treat SHSTK/IBT as being enabled if they're enabled for User *or*
Supervisor mode.  On inter-privilege level far transfers, SHSTK and IBT
can be in play for the target privilege level, i.e. checking the current
privilege could get a false negative, and KVM doesn't know the target
privilege level until emulation gets under way.

Note #2, FAR JMP from 64-bit mode to compatibility mode interacts with
the current SSP, but only to ensure SSP[63:32] == 0.  Don't tag FAR JMP
as SHSTK, which would be rather confusing and would result in FAR JMP
being rejected unnecessarily the vast majority of the time (ignoring that
it's unlikely to ever be emulated).  A future commit will add the #GP(0)
check for the specific FAR JMP scenario.

Note #3, task switches also modify SSP and so need to be rejected.  That
too will be addressed in a future commit.

Suggested-by: Chao Gao <chao.gao@intel.com>
Originally-by: Yang Weijiang <weijiang.yang@intel.com>
Cc: Mathias Krause <minipli@grsecurity.net>
Cc: John Allen <john.allen@amd.com>
Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Link: https://lore.kernel.org/r/20250919223258.1604852-19-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
ColinIanKing pushed a commit that referenced this pull request Sep 22, 2025
We're generally not proponents of rewrites (nasty uncomfortable things
that make you late for dinner!). So why rewrite Binder?

Binder has been evolving over the past 15+ years to meet the evolving
needs of Android. Its responsibilities, expectations, and complexity
have grown considerably during that time. While we expect Binder to
continue to evolve along with Android, there are a number of factors
that currently constrain our ability to develop/maintain it. Briefly
those are:

1. Complexity: Binder is at the intersection of everything in Android and
   fulfills many responsibilities beyond IPC. It has become many things
   to many people, and due to its many features and their interactions
   with each other, its complexity is quite high. In just 6kLOC it must
   deliver transactions to the right threads. It must correctly parse
   and translate the contents of transactions, which can contain several
   objects of different types (e.g., pointers, fds) that can interact
   with each other. It controls the size of thread pools in userspace,
   and ensures that transactions are assigned to threads in ways that
   avoid deadlocks where the threadpool has run out of threads. It must
   track refcounts of objects that are shared by several processes by
   forwarding refcount changes between the processes correctly.  It must
   handle numerous error scenarios and it combines/nests 13 different
   locks, 7 reference counters, and atomic variables. Finally, It must
   do all of this as fast and efficiently as possible. Minor performance
   regressions can cause a noticeably degraded user experience.

2. Things to improve: Thousand-line functions [1], error-prone error
   handling [2], and confusing structure can occur as a code base grows
   organically. After more than a decade of development, this codebase
   could use an overhaul.

[1]: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/android/binder.c?h=v6.5#n2896
[2]: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/android/binder.c?h=v6.5#n3658

3. Security critical: Binder is a critical part of Android's sandboxing
   strategy. Even Android's most de-privileged sandboxes (e.g. the
   Chrome renderer, or SW Codec) have direct access to Binder. More than
   just about any other component, it's important that Binder provide
   robust security, and itself be robust against security
   vulnerabilities.

It's #1 (high complexity) that has made continuing to evolve Binder and
resolving #2 (tech debt) exceptionally difficult without causing #3
(security issues). For Binder to continue to meet Android's needs, we
need better ways to manage (and reduce!) complexity without increasing
the risk.

The biggest change is obviously the choice of programming language. We
decided to use Rust because it directly addresses a number of the
challenges within Binder that we have faced during the last years. It
prevents mistakes with ref counting, locking, bounds checking, and also
does a lot to reduce the complexity of error handling. Additionally,
we've been able to use the more expressive type system to encode the
ownership semantics of the various structs and pointers, which takes the
complexity of managing object lifetimes out of the hands of the
programmer, reducing the risk of use-after-frees and similar problems.

Rust has many different pointer types that it uses to encode ownership
semantics into the type system, and this is probably one of the most
important aspects of how it helps in Binder. The Binder driver has a lot
of different objects that have complex ownership semantics; some
pointers own a refcount, some pointers have exclusive ownership, and
some pointers just reference the object and it is kept alive in some
other manner. With Rust, we can use a different pointer type for each
kind of pointer, which enables the compiler to enforce that the
ownership semantics are implemented correctly.

Another useful feature is Rust's error handling. Rust allows for more
simplified error handling with features such as destructors, and you get
compilation failures if errors are not properly handled. This means that
even though Rust requires you to spend more lines of code than C on
things such as writing down invariants that are left implicit in C, the
Rust driver is still slightly smaller than C binder: Rust is 5.5kLOC and
C is 5.8kLOC. (These numbers are excluding blank lines, comments,
binderfs, and any debugging facilities in C that are not yet implemented
in the Rust driver. The numbers include abstractions in rust/kernel/
that are unlikely to be used by other drivers than Binder.)

Although this rewrite completely rethinks how the code is structured and
how assumptions are enforced, we do not fundamentally change *how* the
driver does the things it does. A lot of careful thought has gone into
the existing design. The rewrite is aimed rather at improving code
health, structure, readability, robustness, security, maintainability
and extensibility. We also include more inline documentation, and
improve how assumptions in the code are enforced. Furthermore, all
unsafe code is annotated with a SAFETY comment that explains why it is
correct.

We have left the binderfs filesystem component in C. Rewriting it in
Rust would be a large amount of work and requires a lot of bindings to
the file system interfaces. Binderfs has not historically had the same
challenges with security and complexity, so rewriting binderfs seems to
have lower value than the rest of Binder.

Correctness and feature parity
------------------------------

Rust binder passes all tests that validate the correctness of Binder in
the Android Open Source Project. We can boot a device, and run a variety
of apps and functionality without issues. We have performed this both on
the Cuttlefish Android emulator device, and on a Pixel 6 Pro.

As for feature parity, Rust binder currently implements all features
that C binder supports, with the exception of some debugging facilities.
The missing debugging facilities will be added before we submit the Rust
implementation upstream.

Tracepoints
-----------

I did not include all of the tracepoints as I felt that the mechansim
for making C access fields of Rust structs should be discussed on list
separately. I also did not include the support for building Rust Binder
as a module since that requires exporting a bunch of additional symbols
on the C side.

Original RFC Link with old benchmark numbers:
	https://lore.kernel.org/r/20231101-rust-binder-v1-0-08ba9197f637@google.com

Co-developed-by: Wedson Almeida Filho <wedsonaf@gmail.com>
Signed-off-by: Wedson Almeida Filho <wedsonaf@gmail.com>
Co-developed-by: Matt Gilbride <mattgilbride@google.com>
Signed-off-by: Matt Gilbride <mattgilbride@google.com>
Acked-by: Carlos Llamas <cmllamas@google.com>
Acked-by: Paul Moore <paul@paul-moore.com>
Signed-off-by: Alice Ryhl <aliceryhl@google.com>
Link: https://lore.kernel.org/r/20250919-rust-binder-v2-1-a384b09f28dd@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
ColinIanKing pushed a commit that referenced this pull request Sep 23, 2025
This fixes the following UAF caused by not properly locking hdev when
processing HCI_EV_NUM_COMP_PKTS:

BUG: KASAN: slab-use-after-free in hci_conn_tx_dequeue+0x1be/0x220 net/bluetooth/hci_conn.c:3036
Read of size 4 at addr ffff8880740f0940 by task kworker/u11:0/54

CPU: 1 UID: 0 PID: 54 Comm: kworker/u11:0 Not tainted 6.16.0-rc7 #3 PREEMPT(full)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1ubuntu1 04/01/2014
Workqueue: hci1 hci_rx_work
Call Trace:
 <TASK>
 dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120
 print_address_description mm/kasan/report.c:378 [inline]
 print_report+0xca/0x230 mm/kasan/report.c:480
 kasan_report+0x118/0x150 mm/kasan/report.c:593
 hci_conn_tx_dequeue+0x1be/0x220 net/bluetooth/hci_conn.c:3036
 hci_num_comp_pkts_evt+0x1c8/0xa50 net/bluetooth/hci_event.c:4404
 hci_event_func net/bluetooth/hci_event.c:7477 [inline]
 hci_event_packet+0x7e0/0x1200 net/bluetooth/hci_event.c:7531
 hci_rx_work+0x46a/0xe80 net/bluetooth/hci_core.c:4070
 process_one_work kernel/workqueue.c:3238 [inline]
 process_scheduled_works+0xae1/0x17b0 kernel/workqueue.c:3321
 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402
 kthread+0x70e/0x8a0 kernel/kthread.c:464
 ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148
 ret_from_fork_asm+0x1a/0x30 home/kwqcheii/source/fuzzing/kernel/kasan/linux-6.16-rc7/arch/x86/entry/entry_64.S:245
 </TASK>

Allocated by task 54:
 kasan_save_stack mm/kasan/common.c:47 [inline]
 kasan_save_track+0x3e/0x80 mm/kasan/common.c:68
 poison_kmalloc_redzone mm/kasan/common.c:377 [inline]
 __kasan_kmalloc+0x93/0xb0 mm/kasan/common.c:394
 kasan_kmalloc include/linux/kasan.h:260 [inline]
 __kmalloc_cache_noprof+0x230/0x3d0 mm/slub.c:4359
 kmalloc_noprof include/linux/slab.h:905 [inline]
 kzalloc_noprof include/linux/slab.h:1039 [inline]
 __hci_conn_add+0x233/0x1b30 net/bluetooth/hci_conn.c:939
 le_conn_complete_evt+0x3d6/0x1220 net/bluetooth/hci_event.c:5628
 hci_le_enh_conn_complete_evt+0x189/0x470 net/bluetooth/hci_event.c:5794
 hci_event_func net/bluetooth/hci_event.c:7474 [inline]
 hci_event_packet+0x78c/0x1200 net/bluetooth/hci_event.c:7531
 hci_rx_work+0x46a/0xe80 net/bluetooth/hci_core.c:4070
 process_one_work kernel/workqueue.c:3238 [inline]
 process_scheduled_works+0xae1/0x17b0 kernel/workqueue.c:3321
 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402
 kthread+0x70e/0x8a0 kernel/kthread.c:464
 ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148
 ret_from_fork_asm+0x1a/0x30 home/kwqcheii/source/fuzzing/kernel/kasan/linux-6.16-rc7/arch/x86/entry/entry_64.S:245

Freed by task 9572:
 kasan_save_stack mm/kasan/common.c:47 [inline]
 kasan_save_track+0x3e/0x80 mm/kasan/common.c:68
 kasan_save_free_info+0x46/0x50 mm/kasan/generic.c:576
 poison_slab_object mm/kasan/common.c:247 [inline]
 __kasan_slab_free+0x62/0x70 mm/kasan/common.c:264
 kasan_slab_free include/linux/kasan.h:233 [inline]
 slab_free_hook mm/slub.c:2381 [inline]
 slab_free mm/slub.c:4643 [inline]
 kfree+0x18e/0x440 mm/slub.c:4842
 device_release+0x9c/0x1c0
 kobject_cleanup lib/kobject.c:689 [inline]
 kobject_release lib/kobject.c:720 [inline]
 kref_put include/linux/kref.h:65 [inline]
 kobject_put+0x22b/0x480 lib/kobject.c:737
 hci_conn_cleanup net/bluetooth/hci_conn.c:175 [inline]
 hci_conn_del+0x8ff/0xcb0 net/bluetooth/hci_conn.c:1173
 hci_abort_conn_sync+0x5d1/0xdf0 net/bluetooth/hci_sync.c:5689
 hci_cmd_sync_work+0x210/0x3a0 net/bluetooth/hci_sync.c:332
 process_one_work kernel/workqueue.c:3238 [inline]
 process_scheduled_works+0xae1/0x17b0 kernel/workqueue.c:3321
 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402
 kthread+0x70e/0x8a0 kernel/kthread.c:464
 ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148
 ret_from_fork_asm+0x1a/0x30 home/kwqcheii/source/fuzzing/kernel/kasan/linux-6.16-rc7/arch/x86/entry/entry_64.S:245

Fixes: 134f4b3 ("Bluetooth: add support for skb TX SND/COMPLETION timestamping")
Reported-by: Junvyyang, Tencent Zhuque Lab <zhuque@tencent.com>
Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com>
ColinIanKing pushed a commit that referenced this pull request Sep 23, 2025
This fixes the following UFA in hci_acl_create_conn_sync where a
connection still pending is command submission (conn->state == BT_OPEN)
maybe freed, also since this also can happen with the likes of
hci_le_create_conn_sync fix it as well:

BUG: KASAN: slab-use-after-free in hci_acl_create_conn_sync+0x5ef/0x790 net/bluetooth/hci_sync.c:6861
Write of size 2 at addr ffff88805ffcc038 by task kworker/u11:2/9541

CPU: 1 UID: 0 PID: 9541 Comm: kworker/u11:2 Not tainted 6.16.0-rc7 #3 PREEMPT(full)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1ubuntu1 04/01/2014
Workqueue: hci3 hci_cmd_sync_work
Call Trace:
 <TASK>
 dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120
 print_address_description mm/kasan/report.c:378 [inline]
 print_report+0xca/0x230 mm/kasan/report.c:480
 kasan_report+0x118/0x150 mm/kasan/report.c:593
 hci_acl_create_conn_sync+0x5ef/0x790 net/bluetooth/hci_sync.c:6861
 hci_cmd_sync_work+0x210/0x3a0 net/bluetooth/hci_sync.c:332
 process_one_work kernel/workqueue.c:3238 [inline]
 process_scheduled_works+0xae1/0x17b0 kernel/workqueue.c:3321
 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402
 kthread+0x70e/0x8a0 kernel/kthread.c:464
 ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148
 ret_from_fork_asm+0x1a/0x30 home/kwqcheii/source/fuzzing/kernel/kasan/linux-6.16-rc7/arch/x86/entry/entry_64.S:245
 </TASK>

Allocated by task 123736:
 kasan_save_stack mm/kasan/common.c:47 [inline]
 kasan_save_track+0x3e/0x80 mm/kasan/common.c:68
 poison_kmalloc_redzone mm/kasan/common.c:377 [inline]
 __kasan_kmalloc+0x93/0xb0 mm/kasan/common.c:394
 kasan_kmalloc include/linux/kasan.h:260 [inline]
 __kmalloc_cache_noprof+0x230/0x3d0 mm/slub.c:4359
 kmalloc_noprof include/linux/slab.h:905 [inline]
 kzalloc_noprof include/linux/slab.h:1039 [inline]
 __hci_conn_add+0x233/0x1b30 net/bluetooth/hci_conn.c:939
 hci_conn_add_unset net/bluetooth/hci_conn.c:1051 [inline]
 hci_connect_acl+0x16c/0x4e0 net/bluetooth/hci_conn.c:1634
 pair_device+0x418/0xa70 net/bluetooth/mgmt.c:3556
 hci_mgmt_cmd+0x9c9/0xef0 net/bluetooth/hci_sock.c:1719
 hci_sock_sendmsg+0x6ca/0xef0 net/bluetooth/hci_sock.c:1839
 sock_sendmsg_nosec net/socket.c:712 [inline]
 __sock_sendmsg+0x219/0x270 net/socket.c:727
 sock_write_iter+0x258/0x330 net/socket.c:1131
 new_sync_write fs/read_write.c:593 [inline]
 vfs_write+0x54b/0xa90 fs/read_write.c:686
 ksys_write+0x145/0x250 fs/read_write.c:738
 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
 do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94
 entry_SYSCALL_64_after_hwframe+0x77/0x7f

Freed by task 103680:
 kasan_save_stack mm/kasan/common.c:47 [inline]
 kasan_save_track+0x3e/0x80 mm/kasan/common.c:68
 kasan_save_free_info+0x46/0x50 mm/kasan/generic.c:576
 poison_slab_object mm/kasan/common.c:247 [inline]
 __kasan_slab_free+0x62/0x70 mm/kasan/common.c:264
 kasan_slab_free include/linux/kasan.h:233 [inline]
 slab_free_hook mm/slub.c:2381 [inline]
 slab_free mm/slub.c:4643 [inline]
 kfree+0x18e/0x440 mm/slub.c:4842
 device_release+0x9c/0x1c0
 kobject_cleanup lib/kobject.c:689 [inline]
 kobject_release lib/kobject.c:720 [inline]
 kref_put include/linux/kref.h:65 [inline]
 kobject_put+0x22b/0x480 lib/kobject.c:737
 hci_conn_cleanup net/bluetooth/hci_conn.c:175 [inline]
 hci_conn_del+0x8ff/0xcb0 net/bluetooth/hci_conn.c:1173
 hci_conn_complete_evt+0x3c7/0x1040 net/bluetooth/hci_event.c:3199
 hci_event_func net/bluetooth/hci_event.c:7477 [inline]
 hci_event_packet+0x7e0/0x1200 net/bluetooth/hci_event.c:7531
 hci_rx_work+0x46a/0xe80 net/bluetooth/hci_core.c:4070
 process_one_work kernel/workqueue.c:3238 [inline]
 process_scheduled_works+0xae1/0x17b0 kernel/workqueue.c:3321
 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402
 kthread+0x70e/0x8a0 kernel/kthread.c:464
 ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148
 ret_from_fork_asm+0x1a/0x30 home/kwqcheii/source/fuzzing/kernel/kasan/linux-6.16-rc7/arch/x86/entry/entry_64.S:245

Last potentially related work creation:
 kasan_save_stack+0x3e/0x60 mm/kasan/common.c:47
 kasan_record_aux_stack+0xbd/0xd0 mm/kasan/generic.c:548
 insert_work+0x3d/0x330 kernel/workqueue.c:2183
 __queue_work+0xbd9/0xfe0 kernel/workqueue.c:2345
 queue_delayed_work_on+0x18b/0x280 kernel/workqueue.c:2561
 pairing_complete+0x1e7/0x2b0 net/bluetooth/mgmt.c:3451
 pairing_complete_cb+0x1ac/0x230 net/bluetooth/mgmt.c:3487
 hci_connect_cfm include/net/bluetooth/hci_core.h:2064 [inline]
 hci_conn_failed+0x24d/0x310 net/bluetooth/hci_conn.c:1275
 hci_conn_complete_evt+0x3c7/0x1040 net/bluetooth/hci_event.c:3199
 hci_event_func net/bluetooth/hci_event.c:7477 [inline]
 hci_event_packet+0x7e0/0x1200 net/bluetooth/hci_event.c:7531
 hci_rx_work+0x46a/0xe80 net/bluetooth/hci_core.c:4070
 process_one_work kernel/workqueue.c:3238 [inline]
 process_scheduled_works+0xae1/0x17b0 kernel/workqueue.c:3321
 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402
 kthread+0x70e/0x8a0 kernel/kthread.c:464
 ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148
 ret_from_fork_asm+0x1a/0x30 home/kwqcheii/source/fuzzing/kernel/kasan/linux-6.16-rc7/arch/x86/entry/entry_64.S:245

Fixes: aef2aa4 ("Bluetooth: hci_event: Fix creating hci_conn object on error status")
Reported-by: Junvyyang, Tencent Zhuque Lab <zhuque@tencent.com>
Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com>
ColinIanKing pushed a commit that referenced this pull request Sep 23, 2025
Following deadlock can be triggered easily by lockdep:

WARNING: possible circular locking dependency detected
6.17.0-rc3-00124-ga12c2658ced0 #1665 Not tainted
------------------------------------------------------
check/1334 is trying to acquire lock:
ff1100011d9d0678 (&q->sysfs_lock){+.+.}-{4:4}, at: blk_unregister_queue+0x53/0x180

but task is already holding lock:
ff1100011d9d00e0 (&q->q_usage_counter(queue)#3){++++}-{0:0}, at: del_gendisk+0xba/0x110

which lock already depends on the new lock.

the existing dependency chain (in reverse order) is:

-> #2 (&q->q_usage_counter(queue)#3){++++}-{0:0}:
       blk_queue_enter+0x40b/0x470
       blkg_conf_prep+0x7b/0x3c0
       tg_set_limit+0x10a/0x3e0
       cgroup_file_write+0xc6/0x420
       kernfs_fop_write_iter+0x189/0x280
       vfs_write+0x256/0x490
       ksys_write+0x83/0x190
       __x64_sys_write+0x21/0x30
       x64_sys_call+0x4608/0x4630
       do_syscall_64+0xdb/0x6b0
       entry_SYSCALL_64_after_hwframe+0x76/0x7e

-> #1 (&q->rq_qos_mutex){+.+.}-{4:4}:
       __mutex_lock+0xd8/0xf50
       mutex_lock_nested+0x2b/0x40
       wbt_init+0x17e/0x280
       wbt_enable_default+0xe9/0x140
       blk_register_queue+0x1da/0x2e0
       __add_disk+0x38c/0x5d0
       add_disk_fwnode+0x89/0x250
       device_add_disk+0x18/0x30
       virtblk_probe+0x13a3/0x1800
       virtio_dev_probe+0x389/0x610
       really_probe+0x136/0x620
       __driver_probe_device+0xb3/0x230
       driver_probe_device+0x2f/0xe0
       __driver_attach+0x158/0x250
       bus_for_each_dev+0xa9/0x130
       driver_attach+0x26/0x40
       bus_add_driver+0x178/0x3d0
       driver_register+0x7d/0x1c0
       __register_virtio_driver+0x2c/0x60
       virtio_blk_init+0x6f/0xe0
       do_one_initcall+0x94/0x540
       kernel_init_freeable+0x56a/0x7b0
       kernel_init+0x2b/0x270
       ret_from_fork+0x268/0x4c0
       ret_from_fork_asm+0x1a/0x30

-> #0 (&q->sysfs_lock){+.+.}-{4:4}:
       __lock_acquire+0x1835/0x2940
       lock_acquire+0xf9/0x450
       __mutex_lock+0xd8/0xf50
       mutex_lock_nested+0x2b/0x40
       blk_unregister_queue+0x53/0x180
       __del_gendisk+0x226/0x690
       del_gendisk+0xba/0x110
       sd_remove+0x49/0xb0 [sd_mod]
       device_remove+0x87/0xb0
       device_release_driver_internal+0x11e/0x230
       device_release_driver+0x1a/0x30
       bus_remove_device+0x14d/0x220
       device_del+0x1e1/0x5a0
       __scsi_remove_device+0x1ff/0x2f0
       scsi_remove_device+0x37/0x60
       sdev_store_delete+0x77/0x100
       dev_attr_store+0x1f/0x40
       sysfs_kf_write+0x65/0x90
       kernfs_fop_write_iter+0x189/0x280
       vfs_write+0x256/0x490
       ksys_write+0x83/0x190
       __x64_sys_write+0x21/0x30
       x64_sys_call+0x4608/0x4630
       do_syscall_64+0xdb/0x6b0
       entry_SYSCALL_64_after_hwframe+0x76/0x7e

other info that might help us debug this:

Chain exists of:
  &q->sysfs_lock --> &q->rq_qos_mutex --> &q->q_usage_counter(queue)#3

 Possible unsafe locking scenario:

       CPU0                    CPU1
       ----                    ----
  lock(&q->q_usage_counter(queue)#3);
                               lock(&q->rq_qos_mutex);
                               lock(&q->q_usage_counter(queue)#3);
  lock(&q->sysfs_lock);

Root cause is that queue_usage_counter is grabbed with rq_qos_mutex
held in blkg_conf_prep(), while queue should be freezed before
rq_qos_mutex from other context.

The blk_queue_enter() from blkg_conf_prep() is used to protect against
policy deactivation, which is already protected with blkcg_mutex, hence
convert blk_queue_enter() to blkcg_mutex to fix this problem. Meanwhile,
consider that blkcg_mutex is held after queue is freezed from policy
deactivation, also convert blkg_alloc() to use GFP_NOIO.

Signed-off-by: Yu Kuai <yukuai3@huawei.com>
Reviewed-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
ColinIanKing pushed a commit that referenced this pull request Sep 23, 2025
Don't emulate branch instructions, e.g. CALL/RET/JMP etc., that are
affected by Shadow Stacks and/or Indirect Branch Tracking when said
features are enabled in the guest, as fully emulating CET would require
significant complexity for no practical benefit (KVM shouldn't need to
emulate branch instructions on modern hosts).  Simply doing nothing isn't
an option as that would allow a malicious entity to subvert CET
protections via the emulator.

To detect instructions that are subject to IBT or affect IBT state, use
the existing IsBranch flag along with the source operand type to detect
indirect branches, and the existing NearBranch flag to detect far JMPs
and CALLs, all of which are effectively indirect.  Explicitly check for
emulation of IRET, FAR RET (IMM), and SYSEXIT (the ret-like far branches)
instead of adding another flag, e.g. IsRet, as it's unlikely the emulator
will ever need to check for return-like instructions outside of this one
specific flow.  Use an allow-list instead of a deny-list because (a) it's
a shorter list and (b) so that a missed entry gets a false positive, not a
false negative (i.e. reject emulation instead of clobbering CET state).

For Shadow Stacks, explicitly track instructions that directly affect the
current SSP, as KVM's emulator doesn't have existing flags that can be
used to precisely detect such instructions.  Alternatively, the em_xxx()
helpers could directly check for ShadowStack interactions, but using a
dedicated flag is arguably easier to audit, and allows for handling both
IBT and SHSTK in one fell swoop.

Note!  On far transfers, do NOT consult the current privilege level and
instead treat SHSTK/IBT as being enabled if they're enabled for User *or*
Supervisor mode.  On inter-privilege level far transfers, SHSTK and IBT
can be in play for the target privilege level, i.e. checking the current
privilege could get a false negative, and KVM doesn't know the target
privilege level until emulation gets under way.

Note #2, FAR JMP from 64-bit mode to compatibility mode interacts with
the current SSP, but only to ensure SSP[63:32] == 0.  Don't tag FAR JMP
as SHSTK, which would be rather confusing and would result in FAR JMP
being rejected unnecessarily the vast majority of the time (ignoring that
it's unlikely to ever be emulated).  A future commit will add the #GP(0)
check for the specific FAR JMP scenario.

Note #3, task switches also modify SSP and so need to be rejected.  That
too will be addressed in a future commit.

Suggested-by: Chao Gao <chao.gao@intel.com>
Originally-by: Yang Weijiang <weijiang.yang@intel.com>
Cc: Mathias Krause <minipli@grsecurity.net>
Cc: John Allen <john.allen@amd.com>
Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Reviewed-by: Chao Gao <chao.gao@intel.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Link: https://lore.kernel.org/r/20250919223258.1604852-19-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
ColinIanKing pushed a commit that referenced this pull request Sep 27, 2025
Ido Schimmel says:

====================
nexthop: Various fixes

Patch #1 fixes a NPD that was recently reported by syzbot.

Patch #2 fixes an issue in the existing FIB nexthop selftest.

Patch #3 extends the selftest with test cases for the bug that was fixed
in the first patch.
====================

Link: https://patch.msgid.link/20250921150824.149157-1-idosch@nvidia.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
ColinIanKing pushed a commit that referenced this pull request Sep 27, 2025
This fixes the following UAF caused by not properly locking hdev when
processing HCI_EV_NUM_COMP_PKTS:

BUG: KASAN: slab-use-after-free in hci_conn_tx_dequeue+0x1be/0x220 net/bluetooth/hci_conn.c:3036
Read of size 4 at addr ffff8880740f0940 by task kworker/u11:0/54

CPU: 1 UID: 0 PID: 54 Comm: kworker/u11:0 Not tainted 6.16.0-rc7 #3 PREEMPT(full)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1ubuntu1 04/01/2014
Workqueue: hci1 hci_rx_work
Call Trace:
 <TASK>
 dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120
 print_address_description mm/kasan/report.c:378 [inline]
 print_report+0xca/0x230 mm/kasan/report.c:480
 kasan_report+0x118/0x150 mm/kasan/report.c:593
 hci_conn_tx_dequeue+0x1be/0x220 net/bluetooth/hci_conn.c:3036
 hci_num_comp_pkts_evt+0x1c8/0xa50 net/bluetooth/hci_event.c:4404
 hci_event_func net/bluetooth/hci_event.c:7477 [inline]
 hci_event_packet+0x7e0/0x1200 net/bluetooth/hci_event.c:7531
 hci_rx_work+0x46a/0xe80 net/bluetooth/hci_core.c:4070
 process_one_work kernel/workqueue.c:3238 [inline]
 process_scheduled_works+0xae1/0x17b0 kernel/workqueue.c:3321
 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402
 kthread+0x70e/0x8a0 kernel/kthread.c:464
 ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148
 ret_from_fork_asm+0x1a/0x30 home/kwqcheii/source/fuzzing/kernel/kasan/linux-6.16-rc7/arch/x86/entry/entry_64.S:245
 </TASK>

Allocated by task 54:
 kasan_save_stack mm/kasan/common.c:47 [inline]
 kasan_save_track+0x3e/0x80 mm/kasan/common.c:68
 poison_kmalloc_redzone mm/kasan/common.c:377 [inline]
 __kasan_kmalloc+0x93/0xb0 mm/kasan/common.c:394
 kasan_kmalloc include/linux/kasan.h:260 [inline]
 __kmalloc_cache_noprof+0x230/0x3d0 mm/slub.c:4359
 kmalloc_noprof include/linux/slab.h:905 [inline]
 kzalloc_noprof include/linux/slab.h:1039 [inline]
 __hci_conn_add+0x233/0x1b30 net/bluetooth/hci_conn.c:939
 le_conn_complete_evt+0x3d6/0x1220 net/bluetooth/hci_event.c:5628
 hci_le_enh_conn_complete_evt+0x189/0x470 net/bluetooth/hci_event.c:5794
 hci_event_func net/bluetooth/hci_event.c:7474 [inline]
 hci_event_packet+0x78c/0x1200 net/bluetooth/hci_event.c:7531
 hci_rx_work+0x46a/0xe80 net/bluetooth/hci_core.c:4070
 process_one_work kernel/workqueue.c:3238 [inline]
 process_scheduled_works+0xae1/0x17b0 kernel/workqueue.c:3321
 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402
 kthread+0x70e/0x8a0 kernel/kthread.c:464
 ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148
 ret_from_fork_asm+0x1a/0x30 home/kwqcheii/source/fuzzing/kernel/kasan/linux-6.16-rc7/arch/x86/entry/entry_64.S:245

Freed by task 9572:
 kasan_save_stack mm/kasan/common.c:47 [inline]
 kasan_save_track+0x3e/0x80 mm/kasan/common.c:68
 kasan_save_free_info+0x46/0x50 mm/kasan/generic.c:576
 poison_slab_object mm/kasan/common.c:247 [inline]
 __kasan_slab_free+0x62/0x70 mm/kasan/common.c:264
 kasan_slab_free include/linux/kasan.h:233 [inline]
 slab_free_hook mm/slub.c:2381 [inline]
 slab_free mm/slub.c:4643 [inline]
 kfree+0x18e/0x440 mm/slub.c:4842
 device_release+0x9c/0x1c0
 kobject_cleanup lib/kobject.c:689 [inline]
 kobject_release lib/kobject.c:720 [inline]
 kref_put include/linux/kref.h:65 [inline]
 kobject_put+0x22b/0x480 lib/kobject.c:737
 hci_conn_cleanup net/bluetooth/hci_conn.c:175 [inline]
 hci_conn_del+0x8ff/0xcb0 net/bluetooth/hci_conn.c:1173
 hci_abort_conn_sync+0x5d1/0xdf0 net/bluetooth/hci_sync.c:5689
 hci_cmd_sync_work+0x210/0x3a0 net/bluetooth/hci_sync.c:332
 process_one_work kernel/workqueue.c:3238 [inline]
 process_scheduled_works+0xae1/0x17b0 kernel/workqueue.c:3321
 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402
 kthread+0x70e/0x8a0 kernel/kthread.c:464
 ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148
 ret_from_fork_asm+0x1a/0x30 home/kwqcheii/source/fuzzing/kernel/kasan/linux-6.16-rc7/arch/x86/entry/entry_64.S:245

Fixes: 134f4b3 ("Bluetooth: add support for skb TX SND/COMPLETION timestamping")
Reported-by: Junvyyang, Tencent Zhuque Lab <zhuque@tencent.com>
Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com>
ColinIanKing pushed a commit that referenced this pull request Sep 27, 2025
This fixes the following UFA in hci_acl_create_conn_sync where a
connection still pending is command submission (conn->state == BT_OPEN)
maybe freed, also since this also can happen with the likes of
hci_le_create_conn_sync fix it as well:

BUG: KASAN: slab-use-after-free in hci_acl_create_conn_sync+0x5ef/0x790 net/bluetooth/hci_sync.c:6861
Write of size 2 at addr ffff88805ffcc038 by task kworker/u11:2/9541

CPU: 1 UID: 0 PID: 9541 Comm: kworker/u11:2 Not tainted 6.16.0-rc7 #3 PREEMPT(full)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1ubuntu1 04/01/2014
Workqueue: hci3 hci_cmd_sync_work
Call Trace:
 <TASK>
 dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120
 print_address_description mm/kasan/report.c:378 [inline]
 print_report+0xca/0x230 mm/kasan/report.c:480
 kasan_report+0x118/0x150 mm/kasan/report.c:593
 hci_acl_create_conn_sync+0x5ef/0x790 net/bluetooth/hci_sync.c:6861
 hci_cmd_sync_work+0x210/0x3a0 net/bluetooth/hci_sync.c:332
 process_one_work kernel/workqueue.c:3238 [inline]
 process_scheduled_works+0xae1/0x17b0 kernel/workqueue.c:3321
 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402
 kthread+0x70e/0x8a0 kernel/kthread.c:464
 ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148
 ret_from_fork_asm+0x1a/0x30 home/kwqcheii/source/fuzzing/kernel/kasan/linux-6.16-rc7/arch/x86/entry/entry_64.S:245
 </TASK>

Allocated by task 123736:
 kasan_save_stack mm/kasan/common.c:47 [inline]
 kasan_save_track+0x3e/0x80 mm/kasan/common.c:68
 poison_kmalloc_redzone mm/kasan/common.c:377 [inline]
 __kasan_kmalloc+0x93/0xb0 mm/kasan/common.c:394
 kasan_kmalloc include/linux/kasan.h:260 [inline]
 __kmalloc_cache_noprof+0x230/0x3d0 mm/slub.c:4359
 kmalloc_noprof include/linux/slab.h:905 [inline]
 kzalloc_noprof include/linux/slab.h:1039 [inline]
 __hci_conn_add+0x233/0x1b30 net/bluetooth/hci_conn.c:939
 hci_conn_add_unset net/bluetooth/hci_conn.c:1051 [inline]
 hci_connect_acl+0x16c/0x4e0 net/bluetooth/hci_conn.c:1634
 pair_device+0x418/0xa70 net/bluetooth/mgmt.c:3556
 hci_mgmt_cmd+0x9c9/0xef0 net/bluetooth/hci_sock.c:1719
 hci_sock_sendmsg+0x6ca/0xef0 net/bluetooth/hci_sock.c:1839
 sock_sendmsg_nosec net/socket.c:712 [inline]
 __sock_sendmsg+0x219/0x270 net/socket.c:727
 sock_write_iter+0x258/0x330 net/socket.c:1131
 new_sync_write fs/read_write.c:593 [inline]
 vfs_write+0x54b/0xa90 fs/read_write.c:686
 ksys_write+0x145/0x250 fs/read_write.c:738
 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
 do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94
 entry_SYSCALL_64_after_hwframe+0x77/0x7f

Freed by task 103680:
 kasan_save_stack mm/kasan/common.c:47 [inline]
 kasan_save_track+0x3e/0x80 mm/kasan/common.c:68
 kasan_save_free_info+0x46/0x50 mm/kasan/generic.c:576
 poison_slab_object mm/kasan/common.c:247 [inline]
 __kasan_slab_free+0x62/0x70 mm/kasan/common.c:264
 kasan_slab_free include/linux/kasan.h:233 [inline]
 slab_free_hook mm/slub.c:2381 [inline]
 slab_free mm/slub.c:4643 [inline]
 kfree+0x18e/0x440 mm/slub.c:4842
 device_release+0x9c/0x1c0
 kobject_cleanup lib/kobject.c:689 [inline]
 kobject_release lib/kobject.c:720 [inline]
 kref_put include/linux/kref.h:65 [inline]
 kobject_put+0x22b/0x480 lib/kobject.c:737
 hci_conn_cleanup net/bluetooth/hci_conn.c:175 [inline]
 hci_conn_del+0x8ff/0xcb0 net/bluetooth/hci_conn.c:1173
 hci_conn_complete_evt+0x3c7/0x1040 net/bluetooth/hci_event.c:3199
 hci_event_func net/bluetooth/hci_event.c:7477 [inline]
 hci_event_packet+0x7e0/0x1200 net/bluetooth/hci_event.c:7531
 hci_rx_work+0x46a/0xe80 net/bluetooth/hci_core.c:4070
 process_one_work kernel/workqueue.c:3238 [inline]
 process_scheduled_works+0xae1/0x17b0 kernel/workqueue.c:3321
 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402
 kthread+0x70e/0x8a0 kernel/kthread.c:464
 ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148
 ret_from_fork_asm+0x1a/0x30 home/kwqcheii/source/fuzzing/kernel/kasan/linux-6.16-rc7/arch/x86/entry/entry_64.S:245

Last potentially related work creation:
 kasan_save_stack+0x3e/0x60 mm/kasan/common.c:47
 kasan_record_aux_stack+0xbd/0xd0 mm/kasan/generic.c:548
 insert_work+0x3d/0x330 kernel/workqueue.c:2183
 __queue_work+0xbd9/0xfe0 kernel/workqueue.c:2345
 queue_delayed_work_on+0x18b/0x280 kernel/workqueue.c:2561
 pairing_complete+0x1e7/0x2b0 net/bluetooth/mgmt.c:3451
 pairing_complete_cb+0x1ac/0x230 net/bluetooth/mgmt.c:3487
 hci_connect_cfm include/net/bluetooth/hci_core.h:2064 [inline]
 hci_conn_failed+0x24d/0x310 net/bluetooth/hci_conn.c:1275
 hci_conn_complete_evt+0x3c7/0x1040 net/bluetooth/hci_event.c:3199
 hci_event_func net/bluetooth/hci_event.c:7477 [inline]
 hci_event_packet+0x7e0/0x1200 net/bluetooth/hci_event.c:7531
 hci_rx_work+0x46a/0xe80 net/bluetooth/hci_core.c:4070
 process_one_work kernel/workqueue.c:3238 [inline]
 process_scheduled_works+0xae1/0x17b0 kernel/workqueue.c:3321
 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3402
 kthread+0x70e/0x8a0 kernel/kthread.c:464
 ret_from_fork+0x3fc/0x770 arch/x86/kernel/process.c:148
 ret_from_fork_asm+0x1a/0x30 home/kwqcheii/source/fuzzing/kernel/kasan/linux-6.16-rc7/arch/x86/entry/entry_64.S:245

Fixes: aef2aa4 ("Bluetooth: hci_event: Fix creating hci_conn object on error status")
Reported-by: Junvyyang, Tencent Zhuque Lab <zhuque@tencent.com>
Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com>
ColinIanKing pushed a commit that referenced this pull request Sep 27, 2025
Don't emulate branch instructions, e.g. CALL/RET/JMP etc., that are
affected by Shadow Stacks and/or Indirect Branch Tracking when said
features are enabled in the guest, as fully emulating CET would require
significant complexity for no practical benefit (KVM shouldn't need to
emulate branch instructions on modern hosts).  Simply doing nothing isn't
an option as that would allow a malicious entity to subvert CET
protections via the emulator.

To detect instructions that are subject to IBT or affect IBT state, use
the existing IsBranch flag along with the source operand type to detect
indirect branches, and the existing NearBranch flag to detect far JMPs
and CALLs, all of which are effectively indirect.  Explicitly check for
emulation of IRET, FAR RET (IMM), and SYSEXIT (the ret-like far branches)
instead of adding another flag, e.g. IsRet, as it's unlikely the emulator
will ever need to check for return-like instructions outside of this one
specific flow.  Use an allow-list instead of a deny-list because (a) it's
a shorter list and (b) so that a missed entry gets a false positive, not a
false negative (i.e. reject emulation instead of clobbering CET state).

For Shadow Stacks, explicitly track instructions that directly affect the
current SSP, as KVM's emulator doesn't have existing flags that can be
used to precisely detect such instructions.  Alternatively, the em_xxx()
helpers could directly check for ShadowStack interactions, but using a
dedicated flag is arguably easier to audit, and allows for handling both
IBT and SHSTK in one fell swoop.

Note!  On far transfers, do NOT consult the current privilege level and
instead treat SHSTK/IBT as being enabled if they're enabled for User *or*
Supervisor mode.  On inter-privilege level far transfers, SHSTK and IBT
can be in play for the target privilege level, i.e. checking the current
privilege could get a false negative, and KVM doesn't know the target
privilege level until emulation gets under way.

Note #2, FAR JMP from 64-bit mode to compatibility mode interacts with
the current SSP, but only to ensure SSP[63:32] == 0.  Don't tag FAR JMP
as SHSTK, which would be rather confusing and would result in FAR JMP
being rejected unnecessarily the vast majority of the time (ignoring that
it's unlikely to ever be emulated).  A future commit will add the #GP(0)
check for the specific FAR JMP scenario.

Note #3, task switches also modify SSP and so need to be rejected.  That
too will be addressed in a future commit.

Suggested-by: Chao Gao <chao.gao@intel.com>
Originally-by: Yang Weijiang <weijiang.yang@intel.com>
Cc: Mathias Krause <minipli@grsecurity.net>
Cc: John Allen <john.allen@amd.com>
Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Reviewed-by: Chao Gao <chao.gao@intel.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20250919223258.1604852-19-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
ColinIanKing pushed a commit that referenced this pull request Sep 29, 2025
Before disabling SR-IOV via config space accesses to the parent PF,
sriov_disable() first removes the PCI devices representing the VFs.

Since commit 9d16947 ("PCI: Add global pci_lock_rescan_remove()")
such removal operations are serialized against concurrent remove and
rescan using the pci_rescan_remove_lock. No such locking was ever added
in sriov_disable() however. In particular when commit 18f9e9d
("PCI/IOV: Factor out sriov_add_vfs()") factored out the PCI device
removal into sriov_del_vfs() there was still no locking around the
pci_iov_remove_virtfn() calls.

On s390 the lack of serialization in sriov_disable() may cause double
remove and list corruption with the below (amended) trace being observed:

  PSW:  0704c00180000000 0000000c914e4b38 (klist_put+56)
  GPRS: 000003800313fb48 0000000000000000 0000000100000001 0000000000000001
	00000000f9b520a8 0000000000000000 0000000000002fbd 00000000f4cc9480
	0000000000000001 0000000000000000 0000000000000000 0000000180692828
	00000000818e8000 000003800313fe2c 000003800313fb20 000003800313fad8
  #0 [3800313fb20] device_del at c9158ad5c
  #1 [3800313fb88] pci_remove_bus_device at c915105ba
  #2 [3800313fbd0] pci_iov_remove_virtfn at c9152f198
  #3 [3800313fc28] zpci_iov_remove_virtfn at c90fb67c0
  #4 [3800313fc60] zpci_bus_remove_device at c90fb6104
  #5 [3800313fca0] __zpci_event_availability at c90fb3dca
  #6 [3800313fd08] chsc_process_sei_nt0 at c918fe4a2
  #7 [3800313fd60] crw_collect_info at c91905822
  #8 [3800313fe10] kthread at c90feb390
  #9 [3800313fe68] __ret_from_fork at c90f6aa64
  #10 [3800313fe98] ret_from_fork at c9194f3f2.

This is because in addition to sriov_disable() removing the VFs, the
platform also generates hot-unplug events for the VFs. This being the
reverse operation to the hotplug events generated by sriov_enable() and
handled via pdev->no_vf_scan. And while the event processing takes
pci_rescan_remove_lock and checks whether the struct pci_dev still exists,
the lack of synchronization makes this checking racy.

Other races may also be possible of course though given that this lack of
locking persisted so long observable races seem very rare. Even on s390 the
list corruption was only observed with certain devices since the platform
events are only triggered by config accesses after the removal, so as long
as the removal finished synchronously they would not race. Either way the
locking is missing so fix this by adding it to the sriov_del_vfs() helper.

Just like PCI rescan-remove, locking is also missing in sriov_add_vfs()
including for the error case where pci_stop_and_remove_bus_device() is
called without the PCI rescan-remove lock being held. Even in the non-error
case, adding new PCI devices and buses should be serialized via the PCI
rescan-remove lock. Add the necessary locking.

Fixes: 18f9e9d ("PCI/IOV: Factor out sriov_add_vfs()")
Signed-off-by: Niklas Schnelle <schnelle@linux.ibm.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Reviewed-by: Benjamin Block <bblock@linux.ibm.com>
Reviewed-by: Farhan Ali <alifm@linux.ibm.com>
Reviewed-by: Julian Ruess <julianr@linux.ibm.com>
Cc: stable@vger.kernel.org
Link: https://patch.msgid.link/20250826-pci_fix_sriov_disable-v1-1-2d0bc938f2a3@linux.ibm.com
ColinIanKing pushed a commit that referenced this pull request Sep 29, 2025
Biju <biju.das.au@gmail.com> says:

From: Biju Das <biju.das.jz@bp.renesas.com>

The calculation formula for nominal bit rate of classical CAN is same as
that of nominal bit rate of CANFD on the RZ/G3E SoC and R-Car Gen4
compared to other SoCs. Update the nominal bit rate constants.

Apart from this, for replacing function-like macros, introduced
rcar_canfd_compute_{nominal,data}_bit_rate_cfg().

v2->v3:
 * Replaced "shared_bittiming"->"shared_can_regs" as it is same for RZ/G3E
   and R-Car Gen4.
 * Updated commit header and description for patch#1.
 * Added Rb tag from Geert for patch #2,#3 and #4.
 * Dropped _MASK suffix from RCANFD_CFG_* macros.
 * Dropped _MASK suffix from RCANFD_NCFG_NBRP_MASK macro.
 * Dropped _MASK suffix from the macro RCANFD_DCFG_DBRP_MASK.
 * Followed the order as used in struct can_bittiming{_const} for easy
   maintenance.
v1->v2:
 * Dropped patch#2 as it is accepted.
 * Moved patch#4 to patch#2.
 * Updated commit header and description for patch#2.
 * Kept RCANFD_CFG* macro definitions to give a meaning to the magic
   number using GENMASK macro and used FIELD_PREP to extract value.
 * Split patch#3 for computing nominal  and data bit rate config separate.
 * Updated rcar_canfd_compute_nominal_bit_rate_cfg() to handle
   nominal bit rate configuration for both classical CAN and CANFD.
 * Replaced RCANFD_NCFG_NBRP->RCANFD_NCFG_NBRP_MASK and used FIELD_PREP to
   extract value.
 * Replaced RCANFD_DCFG_DBRP->RCANFD_DCFG_DBRP_MASK and used FIELD_PREP to
   extract value.

Link: https://patch.msgid.link/20250908120940.147196-1-biju.das.jz@bp.renesas.com
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
ColinIanKing pushed a commit that referenced this pull request Sep 29, 2025
…and struct raw_sock"

Vincent Mailhol <mailhol@kernel.org> says:

A few bytes can be shaved out of can raw's struct uniqframe and struct
raw_sock.

Patch #1 reorders struct uniqframe fields to save 8 bytes.

Patch #2 and #3 modify struct raw_sock to use bitfields and to reorder
its fields to save 24 bytes in total.

Link: https://patch.msgid.link/20250917-can-raw-repack-v2-0-395e8b3a4437@kernel.org
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
ColinIanKing pushed a commit that referenced this pull request Sep 29, 2025
…CAN XL step 3/3"

Vincent Mailhol <mailhol@kernel.org> says:

In November last year, I sent an RFC to introduce CAN XL [1]. That
RFC, despite positive feedback, was put on hold due to some unanswered
question concerning the PWM encoding [2].

While stuck, some small preparation work was done in parallel in [3]
by refactoring the struct can_priv and doing some trivial clean-up and
renaming. Initially, [3] received zero feedback but was eventually
merged after splitting it in smaller parts and resending it.

Finally, in July this year, we clarified the remaining mysteries about
PWM calculation, thus unlocking the series. Summer being a bit busy
because of some personal matters brings us to now.

After doing all the refactoring and adding all the CAN XL features,
the final result is more than 30 patches, definitively too much for a
single series. So I am splitting the remaining changes three:

  - can: rework the CAN MTU logic [4]
  - can: netlink: preparation before introduction of CAN XL (this series)
  - CAN XL (will come right after the two preparation series get merged)

And thus, this series continues and finishes the preparation work done
in [3] and [4]. It contains all the refactoring needed to smoothly
introduce CAN XL. The goal is to:

  - split the functions in smaller pieces: CAN XL will introduce a
    fair amount of code. And some functions which are already fairly
    long (86 lines for can_validate(), 215 lines for can_changelink())
    would grow to disproportionate sizes if the CAN XL logic were to
    be inlined in those functions.

  - repurpose the existing code to handle both CAN FD and CAN XL: a
    huge part of CAN XL simply reuses the CAN FD logic. All the
    existing CAN FD logic is made more generic to handle both CAN FD
    and XL.

In more details:

  - Patch #1 moves struct data_bittiming_params from dev.h to
    bittiming.h and patch #2 makes can_get_relative_tdco() FD agnostic
    before also moving it to bittiming.h.

  - Patch #3 adds some comments to netlink.h tagging which IFLA
    symbols are FD specific.

  - Patches #4 to #6 are refactoring can_validate() and
    can_validate_bittiming().

  - Patches #7 to #11 are refactoring can_changelink() and
    can_tdc_changelink().

  - Patches #12 and #13 are refactoring can_get_size() and
    can_tdc_get_size().

  - Patches #14 to #17 are refactoring can_fill_info() and
    can_tdc_fill_info().

  - Patch #18 makes can_calc_tdco() FD agnostic.

  - Patch #19 adds can_get_ctrlmode_str() which converts control mode
    flags into strings. This is done in preparation of patch #20.

  - Patch #20 is the final patch and improves the user experience by
    providing detailed error messages whenever invalid parameters are
    provided. All those error messages came into handy when debugging
    the upcoming CAN XL patches.

Aside from the last patch, the other changes do not impact any of the
existing functionalities.

The follow up series which introduces CAN XL is nearly completed but
will be sent only once this one is approved: one thing at a time, I do
not want to overwhelm people (including myself).

[1] https://lore.kernel.org/linux-can/20241110155902.72807-16-mailhol.vincent@wanadoo.fr/
[2] https://lore.kernel.org/linux-can/c4771c16-c578-4a6d-baee-918fe276dbe9@wanadoo.fr/
[3] https://lore.kernel.org/linux-can/20241110155902.72807-16-mailhol.vincent@wanadoo.fr/
[4] https://lore.kernel.org/linux-can/20250923-can-fix-mtu-v2-0-984f9868db69@kernel.org/

Link: https://patch.msgid.link/20250923-canxl-netlink-prep-v4-0-e720d28f66fe@kernel.org
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
ColinIanKing pushed a commit that referenced this pull request Oct 6, 2025
Write combining is an optimization feature in CPUs that is frequently
used by modern devices to generate 32 or 64 byte TLPs at the PCIe level.
These large TLPs allow certain optimizations in the driver to HW
communication that improve performance. As WC is unpredictable and
optional the HW designs all tolerate cases where combining doesn't
happen and simply experience a performance degradation.

Unfortunately many virtualization environments on all architectures have
done things that completely disable WC inside the VM with no generic way
to detect this. For example WC was fully blocked in ARM64 KVM until
commit 8c47ce3 ("KVM: arm64: Set io memory s2 pte as normalnc for
vfio pci device").

Trying to use WC when it is known not to work has a measurable
performance cost (~5%). Long ago mlx5 developed an boot time algorithm
to test if WC is available or not by using unique mlx5 HW features to
measure how many large TLPs the device is receiving. The SW generates a
large number of combining opportunities and if any succeed then WC is
declared working.

In mlx5 the WC optimization feature is never used by the kernel except
for the boot time test. The WC is only used by userspace in rdma-core.

Sadly modern ARM CPUs, especially NVIDIA Grace, have a combining
implementation that is very unreliable compared to pretty much
everything prior. This is being fixed architecturally in new CPUs with a
new ST64B instruction, but current shipping devices suffer this problem.

Unreliable means the SW can present thousands of combining opportunities
and the HW will not combine for any of them, which creates a performance
degradation, and critically fails the mlx5 boot test. However, the CPU
is very sensitive to the instruction sequence used, with the better
options being sufficiently good that the performance loss from the
unreliable CPU is not measurable.

Broadly there are several options, from worst to best:
1) A C loop doing a u64 memcpy.
   This was used prior to commit ef30228
   ("IB/mlx5: Use __iowrite64_copy() for write combining stores")
   and failed almost all the time on Grace CPUs.

2) ARM64 assembly with consecutive 8 byte stores. This was implemented
   as an arch-generic __iowriteXX_copy() family of functions suitable
   for performance use in drivers for WC. commit ead7911
   ("arm64/io: Provide a WC friendly __iowriteXX_copy()") provided the
   ARM implementation.

3) ARM64 assembly with consecutive 16 byte stores. This was rejected
   from kernel use over fears of virtualization failures. Common ARM
   VMMs will crash if STP is used against emulated memory.

4) A single NEON store instruction. Userspace has used this option for a
   very long time, it performs well.

5) For future silicon the new ST64B instruction is guaranteed to
   generate a 64 byte TLP 100% of the time

The past upgrade from #1 to #2 was thought to be sufficient to solve
this problem. However, more testing on more systems shows that #3 is
still problematic at a low frequency and the kernel test fails.

Thus, make the mlx5 use the same instructions as userspace during the
boot time WC self test. This way the WC test matches the userspace and
will properly detect the ability of HW to support the WC workload that
userspace will generate. While #4 still has imperfect combining
performance, it is substantially better than #2, and does actually give
a performance win to applications. Self-test failures with #2 are like
3/10 boots, on some systems, #4 has never seen a boot failure.

There is no real general use case for a NEON based WC flow in the
kernel. This is not suitable for any performance path work as getting
into/out of a NEON context is fairly expensive compared to the gain of
WC. Future CPUs are going to fix this issue by using an new ARM
instruction and __iowriteXX_copy() will be updated to use that
automatically, probably using the ALTERNATES mechanism.

Since this problem is constrained to mlx5's unique situation of needing
a non-performance code path to duplicate what mlx5 userspace is doing as
a matter of self-testing, implement it as a one line inline assembly in
the driver directly.

Lastly, this was concluded from the discussion with ARM maintainers
which confirms that this is the best approach for the solution:
https://lore.kernel.org/r/aHqN_hpJl84T1Usi@arm.com

Signed-off-by: Patrisious Haddad <phaddad@nvidia.com>
Reviewed-by: Michael Guralnik <michaelgur@nvidia.com>
Reviewed-by: Moshe Shemesh <moshe@nvidia.com>
Signed-off-by: Tariq Toukan <tariqt@nvidia.com>
Link: https://patch.msgid.link/1759093688-841357-1-git-send-email-tariqt@nvidia.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
ColinIanKing pushed a commit that referenced this pull request Oct 6, 2025
The test starts a workload and then opens events. If the events fail
to open, for example because of perf_event_paranoid, the gopipe of the
workload is leaked and the file descriptor leak check fails when the
test exits. To avoid this cancel the workload when opening the events
fails.

Before:
```
$ perf test -vv 7
  7: PERF_RECORD_* events & perf_sample fields:
 --- start ---
test child forked, pid 1189568
Using CPUID GenuineIntel-6-B7-1
 ------------------------------------------------------------
perf_event_attr:
  type                    	   0 (PERF_TYPE_HARDWARE)
  config                  	   0xa00000000 (cpu_atom/PERF_COUNT_HW_CPU_CYCLES/)
  disabled                	   1
 ------------------------------------------------------------
sys_perf_event_open: pid 0  cpu -1  group_fd -1  flags 0x8
sys_perf_event_open failed, error -13
 ------------------------------------------------------------
perf_event_attr:
  type                             0 (PERF_TYPE_HARDWARE)
  config                           0xa00000000 (cpu_atom/PERF_COUNT_HW_CPU_CYCLES/)
  disabled                         1
  exclude_kernel                   1
 ------------------------------------------------------------
sys_perf_event_open: pid 0  cpu -1  group_fd -1  flags 0x8 = 3
 ------------------------------------------------------------
perf_event_attr:
  type                             0 (PERF_TYPE_HARDWARE)
  config                           0x400000000 (cpu_core/PERF_COUNT_HW_CPU_CYCLES/)
  disabled                         1
 ------------------------------------------------------------
sys_perf_event_open: pid 0  cpu -1  group_fd -1  flags 0x8
sys_perf_event_open failed, error -13
 ------------------------------------------------------------
perf_event_attr:
  type                             0 (PERF_TYPE_HARDWARE)
  config                           0x400000000 (cpu_core/PERF_COUNT_HW_CPU_CYCLES/)
  disabled                         1
  exclude_kernel                   1
 ------------------------------------------------------------
sys_perf_event_open: pid 0  cpu -1  group_fd -1  flags 0x8 = 3
Attempt to add: software/cpu-clock/
..after resolving event: software/config=0/
cpu-clock -> software/cpu-clock/
 ------------------------------------------------------------
perf_event_attr:
  type                             1 (PERF_TYPE_SOFTWARE)
  size                             136
  config                           0x9 (PERF_COUNT_SW_DUMMY)
  sample_type                      IP|TID|TIME|CPU
  read_format                      ID|LOST
  disabled                         1
  inherit                          1
  mmap                             1
  comm                             1
  enable_on_exec                   1
  task                             1
  sample_id_all                    1
  mmap2                            1
  comm_exec                        1
  ksymbol                          1
  bpf_event                        1
  { wakeup_events, wakeup_watermark } 1
 ------------------------------------------------------------
sys_perf_event_open: pid 1189569  cpu 0  group_fd -1  flags 0x8
sys_perf_event_open failed, error -13
perf_evlist__open: Permission denied
 ---- end(-2) ----
Leak of file descriptor 6 that opened: 'pipe:[14200347]'
 ---- unexpected signal (6) ----
iFailed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
Failed to read build ID for //anon
    #0 0x565358f6666e in child_test_sig_handler builtin-test.c:311
    #1 0x7f29ce849df0 in __restore_rt libc_sigaction.c:0
    #2 0x7f29ce89e95c in __pthread_kill_implementation pthread_kill.c:44
    #3 0x7f29ce849cc2 in raise raise.c:27
    #4 0x7f29ce8324ac in abort abort.c:81
    #5 0x565358f662d4 in check_leaks builtin-test.c:226
    #6 0x565358f6682e in run_test_child builtin-test.c:344
    #7 0x565358ef7121 in start_command run-command.c:128
    #8 0x565358f67273 in start_test builtin-test.c:545
    #9 0x565358f6771d in __cmd_test builtin-test.c:647
    #10 0x565358f682bd in cmd_test builtin-test.c:849
    #11 0x565358ee5ded in run_builtin perf.c:349
    #12 0x565358ee6085 in handle_internal_command perf.c:401
    #13 0x565358ee61de in run_argv perf.c:448
    #14 0x565358ee6527 in main perf.c:555
    #15 0x7f29ce833ca8 in __libc_start_call_main libc_start_call_main.h:74
    #16 0x7f29ce833d65 in __libc_start_main@@GLIBC_2.34 libc-start.c:128
    #17 0x565358e391c1 in _start perf[851c1]
  7: PERF_RECORD_* events & perf_sample fields                       : FAILED!
```

After:
```
$ perf test 7
  7: PERF_RECORD_* events & perf_sample fields                       : Skip (permissions)
```

Fixes: 16d00fe ("perf tests: Move test__PERF_RECORD into separate object")
Signed-off-by: Ian Rogers <irogers@google.com>
Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Athira Rajeev <atrajeev@linux.ibm.com>
Cc: Chun-Tse Shao <ctshao@google.com>
Cc: Howard Chu <howardchu95@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Clark <james.clark@linaro.org>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
ColinIanKing pushed a commit that referenced this pull request Oct 6, 2025
The ns_bpf_qdisc selftest triggers a kernel panic:

  Oops[#1]:
  CPU 0 Unable to handle kernel paging request at virtual address 0000000000741d58, era == 90000000851b5ac0, ra == 90000000851b5aa4
  CPU: 0 UID: 0 PID: 449 Comm: test_progs Tainted: G           OE       6.16.0+ #3 PREEMPT(full)
  Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE
  Hardware name: QEMU QEMU Virtual Machine, BIOS unknown 2/2/2022
  pc 90000000851b5ac0 ra 90000000851b5aa4 tp 90000001076b8000 sp 90000001076bb600
  a0 0000000000741ce8 a1 0000000000000001 a2 90000001076bb5c0 a3 0000000000000008
  a4 90000001004c4620 a5 9000000100741ce8 a6 0000000000000000 a7 0100000000000000
  t0 0000000000000010 t1 0000000000000000 t2 9000000104d24d30 t3 0000000000000001
  t4 4f2317da8a7e08c4 t5 fffffefffc002f00 t6 90000001004c4620 t7 ffffffffc61c5b3d
  t8 0000000000000000 u0 0000000000000001 s9 0000000000000050 s0 90000001075bc800
  s1 0000000000000040 s2 900000010597c400 s3 0000000000000008 s4 90000001075bc880
  s5 90000001075bc8f0 s6 0000000000000000 s7 0000000000741ce8 s8 0000000000000000
     ra: 90000000851b5aa4 __qdisc_run+0xac/0x8d8
    ERA: 90000000851b5ac0 __qdisc_run+0xc8/0x8d8
   CRMD: 000000b0 (PLV0 -IE -DA +PG DACF=CC DACM=CC -WE)
   PRMD: 00000004 (PPLV0 +PIE -PWE)
   EUEN: 00000007 (+FPE +SXE +ASXE -BTE)
   ECFG: 00071c1d (LIE=0,2-4,10-12 VS=7)
  ESTAT: 00010000 [PIL] (IS= ECode=1 EsubCode=0)
   BADV: 0000000000741d58
   PRID: 0014c010 (Loongson-64bit, Loongson-3A5000)
  Modules linked in: bpf_testmod(OE) [last unloaded: bpf_testmod(OE)]
  Process test_progs (pid: 449, threadinfo=000000009af02b3a, task=00000000e9ba4956)
  Stack : 0000000000000000 90000001075bc8ac 90000000869524a8 9000000100741ce8
          90000001075bc800 9000000100415300 90000001075bc8ac 0000000000000000
          900000010597c400 900000008694a000 0000000000000000 9000000105b59000
          90000001075bc800 9000000100741ce8 0000000000000050 900000008513000c
          9000000086936000 0000000100094d4c fffffff400676208 0000000000000000
          9000000105b59000 900000008694a000 9000000086bf0dc0 9000000105b59000
          9000000086bf0d68 9000000085147010 90000001075be788 0000000000000000
          9000000086bf0f98 0000000000000001 0000000000000010 9000000006015840
          0000000000000000 9000000086be6c40 0000000000000000 0000000000000000
          0000000000000000 4f2317da8a7e08c4 0000000000000101 4f2317da8a7e08c4
          ...
  Call Trace:
  [<90000000851b5ac0>] __qdisc_run+0xc8/0x8d8
  [<9000000085130008>] __dev_queue_xmit+0x578/0x10f0
  [<90000000853701c0>] ip6_finish_output2+0x2f0/0x950
  [<9000000085374bc8>] ip6_finish_output+0x2b8/0x448
  [<9000000085370b24>] ip6_xmit+0x304/0x858
  [<90000000853c4438>] inet6_csk_xmit+0x100/0x170
  [<90000000852b32f0>] __tcp_transmit_skb+0x490/0xdd0
  [<90000000852b47fc>] tcp_connect+0xbcc/0x1168
  [<90000000853b9088>] tcp_v6_connect+0x580/0x8a0
  [<90000000852e7738>] __inet_stream_connect+0x170/0x480
  [<90000000852e7a98>] inet_stream_connect+0x50/0x88
  [<90000000850f2814>] __sys_connect+0xe4/0x110
  [<90000000850f2858>] sys_connect+0x18/0x28
  [<9000000085520c94>] do_syscall+0x94/0x1a0
  [<9000000083df1fb8>] handle_syscall+0xb8/0x158

  Code: 4001ad80  2400873f  2400832d <240073cc> 001137ff  001133ff  6407b41f  001503cc  0280041d

  ---[ end trace 0000000000000000 ]---

The bpf_fifo_dequeue prog returns a skb which is a pointer. The pointer
is treated as a 32bit value and sign extend to 64bit in epilogue. This
behavior is right for most bpf prog types but wrong for struct ops which
requires LoongArch ABI.

So let's sign extend struct ops return values according to the LoongArch
ABI ([1]) and return value spec in function model.

[1]: https://loongson.github.io/LoongArch-Documentation/LoongArch-ELF-ABI-EN.html

Cc: stable@vger.kernel.org
Fixes: 6abf17d ("LoongArch: BPF: Add struct ops support for trampoline")
Signed-off-by: Hengqi Chen <hengqi.chen@gmail.com>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
ColinIanKing pushed a commit that referenced this pull request Oct 6, 2025
…ux/kernel/git/kvmarm/kvmarm into HEAD

KVM/arm64 changes for 6.17, round #3

 - Invalidate nested MMUs upon freeing the PGD to avoid WARNs when
   visiting from an MMU notifier

 - Fixes to the TLB match process and TLB invalidation range for
   managing the VCNR pseudo-TLB

 - Prevent SPE from erroneously profiling guests due to UNKNOWN reset
   values in PMSCR_EL1

 - Fix save/restore of host MDCR_EL2 to account for eagerly programming
   at vcpu_load() on VHE systems

 - Correct lock ordering when dealing with VGIC LPIs, avoiding scenarios
   where an xarray's spinlock was nested with a *raw* spinlock

 - Permit stage-2 read permission aborts which are possible in the case
   of NV depending on the guest hypervisor's stage-2 translation

 - Call raw_spin_unlock() instead of the internal spinlock API

 - Fix parameter ordering when assigning VBAR_EL1

[Pull into kvm/master to fix conflicts. - Paolo]
ColinIanKing pushed a commit that referenced this pull request Oct 12, 2025
Expand the prefault memory selftest to add a regression test for a KVM bug
where KVM's retry logic would result in (breakable) deadlock due to the
memslot deletion waiting on prefaulting to release SRCU, and prefaulting
waiting on the memslot to fully disappear (KVM uses a two-step process to
delete memslots, and KVM x86 retries page faults if a to-be-deleted, a.k.a.
INVALID, memslot is encountered).

To exercise concurrent memslot remove, spawn a second thread to initiate
memslot removal at roughly the same time as prefaulting.  Test memslot
removal for all testcases, i.e. don't limit concurrent removal to only the
success case.  There are essentially three prefault scenarios (so far)
that are of interest:

 1. Success
 2. ENOENT due to no memslot
 3. EAGAIN due to INVALID memslot

For all intents and purposes, #1 and #2 are mutually exclusive, or rather,
easier to test via separate testcases since writing to non-existent memory
is trivial.  But for #3, making it mutually exclusive with #1 _or_ #2 is
actually more complex than testing memslot removal for all scenarios.  The
only requirement to let memslot removal coexist with other scenarios is a
way to guarantee a stable result, e.g. that the "no memslot" test observes
ENOENT, not EAGAIN, for the final checks.

So, rather than make memslot removal mutually exclusive with the ENOENT
scenario, simply restore the memslot and retry prefaulting.  For the "no
memslot" case, KVM_PRE_FAULT_MEMORY should be idempotent, i.e. should
always fail with ENOENT regardless of how many times userspace attempts
prefaulting.

Pass in both the base GPA and the offset (instead of the "full" GPA) so
that the worker can recreate the memslot.

Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20250924174255.2141847-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
valpackett pushed a commit to valpackett/linux-qclaptops that referenced this pull request Nov 4, 2025
On completion of i915_vma_pin_ww(), a synchronous variant of
dma_fence_work_commit() is called.  When pinning a VMA to GGTT address
space on a Cherry View family processor, or on a Broxton generation SoC
with VTD enabled, i.e., when stop_machine() is then called from
intel_ggtt_bind_vma(), that can potentially lead to lock inversion among
reservation_ww and cpu_hotplug locks.

[86.861179] ======================================================
[86.861193] WARNING: possible circular locking dependency detected
[86.861209] 6.15.0-rc5-CI_DRM_16515-gca0305cadc2d+ ColinIanKing#1 Tainted: G     U
[86.861226] ------------------------------------------------------
[86.861238] i915_module_loa/1432 is trying to acquire lock:
[86.861252] ffffffff83489090 (cpu_hotplug_lock){++++}-{0:0}, at: stop_machine+0x1c/0x50
[86.861290]
but task is already holding lock:
[86.861303] ffffc90002e0b4c8 (reservation_ww_class_mutex){+.+.}-{3:3}, at: i915_vma_pin.constprop.0+0x39/0x1d0 [i915]
[86.862233]
which lock already depends on the new lock.
[86.862251]
the existing dependency chain (in reverse order) is:
[86.862265]
-> ColinIanKing#5 (reservation_ww_class_mutex){+.+.}-{3:3}:
[86.862292]        dma_resv_lockdep+0x19a/0x390
[86.862315]        do_one_initcall+0x60/0x3f0
[86.862334]        kernel_init_freeable+0x3cd/0x680
[86.862353]        kernel_init+0x1b/0x200
[86.862369]        ret_from_fork+0x47/0x70
[86.862383]        ret_from_fork_asm+0x1a/0x30
[86.862399]
-> ColinIanKing#4 (reservation_ww_class_acquire){+.+.}-{0:0}:
[86.862425]        dma_resv_lockdep+0x178/0x390
[86.862440]        do_one_initcall+0x60/0x3f0
[86.862454]        kernel_init_freeable+0x3cd/0x680
[86.862470]        kernel_init+0x1b/0x200
[86.862482]        ret_from_fork+0x47/0x70
[86.862495]        ret_from_fork_asm+0x1a/0x30
[86.862509]
-> ColinIanKing#3 (&mm->mmap_lock){++++}-{3:3}:
[86.862531]        down_read_killable+0x46/0x1e0
[86.862546]        lock_mm_and_find_vma+0xa2/0x280
[86.862561]        do_user_addr_fault+0x266/0x8e0
[86.862578]        exc_page_fault+0x8a/0x2f0
[86.862593]        asm_exc_page_fault+0x27/0x30
[86.862607]        filldir64+0xeb/0x180
[86.862620]        kernfs_fop_readdir+0x118/0x480
[86.862635]        iterate_dir+0xcf/0x2b0
[86.862648]        __x64_sys_getdents64+0x84/0x140
[86.862661]        x64_sys_call+0x1058/0x2660
[86.862675]        do_syscall_64+0x91/0xe90
[86.862689]        entry_SYSCALL_64_after_hwframe+0x76/0x7e
[86.862703]
-> ColinIanKing#2 (&root->kernfs_rwsem){++++}-{3:3}:
[86.862725]        down_write+0x3e/0xf0
[86.862738]        kernfs_add_one+0x30/0x3c0
[86.862751]        kernfs_create_dir_ns+0x53/0xb0
[86.862765]        internal_create_group+0x134/0x4c0
[86.862779]        sysfs_create_group+0x13/0x20
[86.862792]        topology_add_dev+0x1d/0x30
[86.862806]        cpuhp_invoke_callback+0x4b5/0x850
[86.862822]        cpuhp_issue_call+0xbf/0x1f0
[86.862836]        __cpuhp_setup_state_cpuslocked+0x111/0x320
[86.862852]        __cpuhp_setup_state+0xb0/0x220
[86.862866]        topology_sysfs_init+0x30/0x50
[86.862879]        do_one_initcall+0x60/0x3f0
[86.862893]        kernel_init_freeable+0x3cd/0x680
[86.862908]        kernel_init+0x1b/0x200
[86.862921]        ret_from_fork+0x47/0x70
[86.862934]        ret_from_fork_asm+0x1a/0x30
[86.862947]
-> ColinIanKing#1 (cpuhp_state_mutex){+.+.}-{3:3}:
[86.862969]        __mutex_lock+0xaa/0xed0
[86.862982]        mutex_lock_nested+0x1b/0x30
[86.862995]        __cpuhp_setup_state_cpuslocked+0x67/0x320
[86.863012]        __cpuhp_setup_state+0xb0/0x220
[86.863026]        page_alloc_init_cpuhp+0x2d/0x60
[86.863041]        mm_core_init+0x22/0x2d0
[86.863054]        start_kernel+0x576/0xbd0
[86.863068]        x86_64_start_reservations+0x18/0x30
[86.863084]        x86_64_start_kernel+0xbf/0x110
[86.863098]        common_startup_64+0x13e/0x141
[86.863114]
-> #0 (cpu_hotplug_lock){++++}-{0:0}:
[86.863135]        __lock_acquire+0x1635/0x2810
[86.863152]        lock_acquire+0xc4/0x2f0
[86.863166]        cpus_read_lock+0x41/0x100
[86.863180]        stop_machine+0x1c/0x50
[86.863194]        bxt_vtd_ggtt_insert_entries__BKL+0x3b/0x60 [i915]
[86.863987]        intel_ggtt_bind_vma+0x43/0x70 [i915]
[86.864735]        __vma_bind+0x55/0x70 [i915]
[86.865510]        fence_work+0x26/0xa0 [i915]
[86.866248]        fence_notify+0xa1/0x140 [i915]
[86.866983]        __i915_sw_fence_complete+0x8f/0x270 [i915]
[86.867719]        i915_sw_fence_commit+0x39/0x60 [i915]
[86.868453]        i915_vma_pin_ww+0x462/0x1360 [i915]
[86.869228]        i915_vma_pin.constprop.0+0x133/0x1d0 [i915]
[86.870001]        initial_plane_vma+0x307/0x840 [i915]
[86.870774]        intel_initial_plane_config+0x33f/0x670 [i915]
[86.871546]        intel_display_driver_probe_nogem+0x1c6/0x260 [i915]
[86.872330]        i915_driver_probe+0x7fa/0xe80 [i915]
[86.873057]        i915_pci_probe+0xe6/0x220 [i915]
[86.873782]        local_pci_probe+0x47/0xb0
[86.873802]        pci_device_probe+0xf3/0x260
[86.873817]        really_probe+0xf1/0x3c0
[86.873833]        __driver_probe_device+0x8c/0x180
[86.873848]        driver_probe_device+0x24/0xd0
[86.873862]        __driver_attach+0x10f/0x220
[86.873876]        bus_for_each_dev+0x7f/0xe0
[86.873892]        driver_attach+0x1e/0x30
[86.873904]        bus_add_driver+0x151/0x290
[86.873917]        driver_register+0x5e/0x130
[86.873931]        __pci_register_driver+0x7d/0x90
[86.873945]        i915_pci_register_driver+0x23/0x30 [i915]
[86.874678]        i915_init+0x37/0x120 [i915]
[86.875347]        do_one_initcall+0x60/0x3f0
[86.875369]        do_init_module+0x97/0x2a0
[86.875385]        load_module+0x2c54/0x2d80
[86.875398]        init_module_from_file+0x96/0xe0
[86.875413]        idempotent_init_module+0x117/0x330
[86.875426]        __x64_sys_finit_module+0x77/0x100
[86.875440]        x64_sys_call+0x24de/0x2660
[86.875454]        do_syscall_64+0x91/0xe90
[86.875470]        entry_SYSCALL_64_after_hwframe+0x76/0x7e
[86.875486]
other info that might help us debug this:
[86.875502] Chain exists of:
  cpu_hotplug_lock --> reservation_ww_class_acquire --> reservation_ww_class_mutex
[86.875539]  Possible unsafe locking scenario:
[86.875552]        CPU0                    CPU1
[86.875563]        ----                    ----
[86.875573]   lock(reservation_ww_class_mutex);
[86.875588]                                lock(reservation_ww_class_acquire);
[86.875606]                                lock(reservation_ww_class_mutex);
[86.875624]   rlock(cpu_hotplug_lock);
[86.875637]
 *** DEADLOCK ***
[86.875650] 3 locks held by i915_module_loa/1432:
[86.875663]  #0: ffff888101f5c1b0 (&dev->mutex){....}-{3:3}, at: __driver_attach+0x104/0x220
[86.875699]  ColinIanKing#1: ffffc90002e0b4a0 (reservation_ww_class_acquire){+.+.}-{0:0}, at: i915_vma_pin.constprop.0+0x39/0x1d0 [i915]
[86.876512]  ColinIanKing#2: ffffc90002e0b4c8 (reservation_ww_class_mutex){+.+.}-{3:3}, at: i915_vma_pin.constprop.0+0x39/0x1d0 [i915]
[86.877305]
stack backtrace:
[86.877326] CPU: 0 UID: 0 PID: 1432 Comm: i915_module_loa Tainted: G     U              6.15.0-rc5-CI_DRM_16515-gca0305cadc2d+ ColinIanKing#1 PREEMPT(voluntary)
[86.877334] Tainted: [U]=USER
[86.877336] Hardware name:  /NUC5CPYB, BIOS PYBSWCEL.86A.0079.2020.0420.1316 04/20/2020
[86.877339] Call Trace:
[86.877344]  <TASK>
[86.877353]  dump_stack_lvl+0x91/0xf0
[86.877364]  dump_stack+0x10/0x20
[86.877369]  print_circular_bug+0x285/0x360
[86.877379]  check_noncircular+0x135/0x150
[86.877390]  __lock_acquire+0x1635/0x2810
[86.877403]  lock_acquire+0xc4/0x2f0
[86.877408]  ? stop_machine+0x1c/0x50
[86.877422]  ? __pfx_bxt_vtd_ggtt_insert_entries__cb+0x10/0x10 [i915]
[86.878173]  cpus_read_lock+0x41/0x100
[86.878182]  ? stop_machine+0x1c/0x50
[86.878191]  ? __pfx_bxt_vtd_ggtt_insert_entries__cb+0x10/0x10 [i915]
[86.878916]  stop_machine+0x1c/0x50
[86.878927]  bxt_vtd_ggtt_insert_entries__BKL+0x3b/0x60 [i915]
[86.879652]  intel_ggtt_bind_vma+0x43/0x70 [i915]
[86.880375]  __vma_bind+0x55/0x70 [i915]
[86.881133]  fence_work+0x26/0xa0 [i915]
[86.881851]  fence_notify+0xa1/0x140 [i915]
[86.882566]  __i915_sw_fence_complete+0x8f/0x270 [i915]
[86.883286]  i915_sw_fence_commit+0x39/0x60 [i915]
[86.884003]  i915_vma_pin_ww+0x462/0x1360 [i915]
[86.884756]  ? i915_vma_pin.constprop.0+0x6c/0x1d0 [i915]
[86.885513]  i915_vma_pin.constprop.0+0x133/0x1d0 [i915]
[86.886281]  initial_plane_vma+0x307/0x840 [i915]
[86.887049]  intel_initial_plane_config+0x33f/0x670 [i915]
[86.887819]  intel_display_driver_probe_nogem+0x1c6/0x260 [i915]
[86.888587]  i915_driver_probe+0x7fa/0xe80 [i915]
[86.889293]  ? mutex_unlock+0x12/0x20
[86.889301]  ? drm_privacy_screen_get+0x171/0x190
[86.889308]  ? acpi_dev_found+0x66/0x80
[86.889321]  i915_pci_probe+0xe6/0x220 [i915]
[86.890038]  local_pci_probe+0x47/0xb0
[86.890049]  pci_device_probe+0xf3/0x260
[86.890058]  really_probe+0xf1/0x3c0
[86.890067]  __driver_probe_device+0x8c/0x180
[86.890072]  driver_probe_device+0x24/0xd0
[86.890078]  __driver_attach+0x10f/0x220
[86.890083]  ? __pfx___driver_attach+0x10/0x10
[86.890088]  bus_for_each_dev+0x7f/0xe0
[86.890097]  driver_attach+0x1e/0x30
[86.890101]  bus_add_driver+0x151/0x290
[86.890107]  driver_register+0x5e/0x130
[86.890113]  __pci_register_driver+0x7d/0x90
[86.890119]  i915_pci_register_driver+0x23/0x30 [i915]
[86.890833]  i915_init+0x37/0x120 [i915]
[86.891482]  ? __pfx_i915_init+0x10/0x10 [i915]
[86.892135]  do_one_initcall+0x60/0x3f0
[86.892145]  ? __kmalloc_cache_noprof+0x33f/0x470
[86.892157]  do_init_module+0x97/0x2a0
[86.892164]  load_module+0x2c54/0x2d80
[86.892168]  ? __kernel_read+0x15c/0x300
[86.892185]  ? kernel_read_file+0x2b1/0x320
[86.892195]  init_module_from_file+0x96/0xe0
[86.892199]  ? init_module_from_file+0x96/0xe0
[86.892211]  idempotent_init_module+0x117/0x330
[86.892224]  __x64_sys_finit_module+0x77/0x100
[86.892230]  x64_sys_call+0x24de/0x2660
[86.892236]  do_syscall_64+0x91/0xe90
[86.892243]  ? irqentry_exit+0x77/0xb0
[86.892249]  ? sysvec_apic_timer_interrupt+0x57/0xc0
[86.892256]  entry_SYSCALL_64_after_hwframe+0x76/0x7e
[86.892261] RIP: 0033:0x7303e1b2725d
[86.892271] Code: ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 8b bb 0d 00 f7 d8 64 89 01 48
[86.892276] RSP: 002b:00007ffddd1fdb38 EFLAGS: 00000246 ORIG_RAX: 0000000000000139
[86.892281] RAX: ffffffffffffffda RBX: 00005d771d88fd90 RCX: 00007303e1b2725d
[86.892285] RDX: 0000000000000000 RSI: 00005d771d893aa0 RDI: 000000000000000c
[86.892287] RBP: 00007ffddd1fdbf0 R08: 0000000000000040 R09: 00007ffddd1fdb80
[86.892289] R10: 00007303e1c03b20 R11: 0000000000000246 R12: 00005d771d893aa0
[86.892292] R13: 0000000000000000 R14: 00005d771d88f0d0 R15: 00005d771d895710
[86.892304]  </TASK>

Call asynchronous variant of dma_fence_work_commit() in that case.

v3: Provide more verbose in-line comment (Andi),
  - mention target environments in commit message.

Fixes: 7d1c261 ("drm/i915: Take reservation lock around i915_vma_pin.")
Closes: https://gitlab.freedesktop.org/drm/i915/kernel/-/issues/14985
Cc: Andi Shyti <andi.shyti@kernel.org>
Signed-off-by: Janusz Krzysztofik <janusz.krzysztofik@linux.intel.com>
Reviewed-by: Sebastian Brzezinka <sebastian.brzezinka@intel.com>
Reviewed-by: Krzysztof Karas <krzysztof.karas@intel.com>
Acked-by: Andi Shyti <andi.shyti@linux.intel.com>
Signed-off-by: Andi Shyti <andi.shyti@linux.intel.com>
Link: https://lore.kernel.org/r/20251023082925.351307-6-janusz.krzysztofik@linux.intel.com
(cherry picked from commit 648ef13)
Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
valpackett pushed a commit to valpackett/linux-qclaptops that referenced this pull request Nov 4, 2025
When using perf record with the `--overwrite` option, a segmentation fault
occurs if an event fails to open. For example:

  perf record -e cycles-ct -F 1000 -a --overwrite
  Error:
  cycles-ct:H: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'
  perf: Segmentation fault
      #0 0x6466b6 in dump_stack debug.c:366
      ColinIanKing#1 0x646729 in sighandler_dump_stack debug.c:378
      ColinIanKing#2 0x453fd1 in sigsegv_handler builtin-record.c:722
      ColinIanKing#3 0x7f8454e65090 in __restore_rt libc-2.32.so[54090]
      ColinIanKing#4 0x6c5671 in __perf_event__synthesize_id_index synthetic-events.c:1862
      ColinIanKing#5 0x6c5ac0 in perf_event__synthesize_id_index synthetic-events.c:1943
      ColinIanKing#6 0x458090 in record__synthesize builtin-record.c:2075
      ColinIanKing#7 0x45a85a in __cmd_record builtin-record.c:2888
      ColinIanKing#8 0x45deb6 in cmd_record builtin-record.c:4374
      ColinIanKing#9 0x4e5e33 in run_builtin perf.c:349
      ColinIanKing#10 0x4e60bf in handle_internal_command perf.c:401
      ColinIanKing#11 0x4e6215 in run_argv perf.c:448
      #12 0x4e653a in main perf.c:555
      #13 0x7f8454e4fa72 in __libc_start_main libc-2.32.so[3ea72]
      #14 0x43a3ee in _start ??:0

The --overwrite option implies --tail-synthesize, which collects non-sample
events reflecting the system status when recording finishes. However, when
evsel opening fails (e.g., unsupported event 'cycles-ct'), session->evlist
is not initialized and remains NULL. The code unconditionally calls
record__synthesize() in the error path, which iterates through the NULL
evlist pointer and causes a segfault.

To fix it, move the record__synthesize() call inside the error check block, so
it's only called when there was no error during recording, ensuring that evlist
is properly initialized.

Fixes: 4ea648a ("perf record: Add --tail-synthesize option")
Signed-off-by: Shuai Xue <xueshuai@linux.alibaba.com>
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
valpackett pushed a commit to valpackett/linux-qclaptops that referenced this pull request Nov 30, 2025
It's possible that the auxiliary proxy device we add when setting up the
GPIO controller exposing shared pins, will get matched and probed
immediately. The gpio-proxy-driver will then retrieve the shared
descriptor structure. That will cause a recursive mutex locking and
a deadlock because we're already holding the gpio_shared_lock in
gpio_device_setup_shared() and try to take it again in
devm_gpiod_shared_get() like this:

[    4.298346] gpiolib_shared: GPIO 130 owned by f100000.pinctrl is shared by multiple consumers
[    4.307157] gpiolib_shared: Setting up a shared GPIO entry for speaker@0,3
[    4.314604]
[    4.316146] ============================================
[    4.321600] WARNING: possible recursive locking detected
[    4.327054] 6.18.0-rc7-next-20251125-g3f300d0674f6-dirty #3887 Not tainted
[    4.334115] --------------------------------------------
[    4.339566] kworker/u32:3/71 is trying to acquire lock:
[    4.344931] ffffda019ba71850 (gpio_shared_lock){+.+.}-{4:4}, at: devm_gpiod_shared_get+0x34/0x2e0
[    4.354057]
[    4.354057] but task is already holding lock:
[    4.360041] ffffda019ba71850 (gpio_shared_lock){+.+.}-{4:4}, at: gpio_device_setup_shared+0x30/0x268
[    4.369421]
[    4.369421] other info that might help us debug this:
[    4.376126]  Possible unsafe locking scenario:
[    4.376126]
[    4.382198]        CPU0
[    4.384711]        ----
[    4.387223]   lock(gpio_shared_lock);
[    4.390992]   lock(gpio_shared_lock);
[    4.394761]
[    4.394761]  *** DEADLOCK ***
[    4.394761]
[    4.400832]  May be due to missing lock nesting notation
[    4.400832]
[    4.407802] 5 locks held by kworker/u32:3/71:
[    4.412279]  #0: ffff000080020948 ((wq_completion)events_unbound){+.+.}-{0:0}, at: process_one_work+0x194/0x64c
[    4.422650]  ColinIanKing#1: ffff800080963d60 (deferred_probe_work){+.+.}-{0:0}, at: process_one_work+0x1bc/0x64c
[    4.432117]  ColinIanKing#2: ffff00008165c8f8 (&dev->mutex){....}-{4:4}, at: __device_attach+0x3c/0x198
[    4.440700]  ColinIanKing#3: ffffda019ba71850 (gpio_shared_lock){+.+.}-{4:4}, at: gpio_device_setup_shared+0x30/0x268
[    4.450523]  ColinIanKing#4: ffff0000810fe918 (&dev->mutex){....}-{4:4}, at: __device_attach+0x3c/0x198
[    4.459103]
[    4.459103] stack backtrace:
[    4.463581] CPU: 6 UID: 0 PID: 71 Comm: kworker/u32:3 Not tainted 6.18.0-rc7-next-20251125-g3f300d0674f6-dirty #3887 PREEMPT
[    4.463589] Hardware name: Qualcomm Technologies, Inc. Robotics RB5 (DT)
[    4.463593] Workqueue: events_unbound deferred_probe_work_func
[    4.463602] Call trace:
[    4.463604]  show_stack+0x18/0x24 (C)
[    4.463617]  dump_stack_lvl+0x70/0x98
[    4.463627]  dump_stack+0x18/0x24
[    4.463636]  print_deadlock_bug+0x224/0x238
[    4.463643]  __lock_acquire+0xe4c/0x15f0
[    4.463648]  lock_acquire+0x1cc/0x344
[    4.463653]  __mutex_lock+0xb8/0x840
[    4.463661]  mutex_lock_nested+0x24/0x30
[    4.463667]  devm_gpiod_shared_get+0x34/0x2e0
[    4.463674]  gpio_shared_proxy_probe+0x18/0x138
[    4.463682]  auxiliary_bus_probe+0x40/0x78
[    4.463688]  really_probe+0xbc/0x2c0
[    4.463694]  __driver_probe_device+0x78/0x120
[    4.463701]  driver_probe_device+0x3c/0x160
[    4.463708]  __device_attach_driver+0xb8/0x140
[    4.463716]  bus_for_each_drv+0x88/0xe8
[    4.463723]  __device_attach+0xa0/0x198
[    4.463729]  device_initial_probe+0x14/0x20
[    4.463737]  bus_probe_device+0xb4/0xc0
[    4.463743]  device_add+0x578/0x76c
[    4.463747]  __auxiliary_device_add+0x40/0xac
[    4.463752]  gpio_device_setup_shared+0x1f8/0x268
[    4.463758]  gpiochip_add_data_with_key+0xdac/0x10ac
[    4.463763]  devm_gpiochip_add_data_with_key+0x30/0x80
[    4.463768]  msm_pinctrl_probe+0x4b0/0x5e0
[    4.463779]  sm8250_pinctrl_probe+0x18/0x40
[    4.463784]  platform_probe+0x5c/0xa4
[    4.463793]  really_probe+0xbc/0x2c0
[    4.463800]  __driver_probe_device+0x78/0x120
[    4.463807]  driver_probe_device+0x3c/0x160
[    4.463814]  __device_attach_driver+0xb8/0x140
[    4.463821]  bus_for_each_drv+0x88/0xe8
[    4.463827]  __device_attach+0xa0/0x198
[    4.463834]  device_initial_probe+0x14/0x20
[    4.463841]  bus_probe_device+0xb4/0xc0
[    4.463847]  deferred_probe_work_func+0x90/0xcc
[    4.463854]  process_one_work+0x214/0x64c
[    4.463860]  worker_thread+0x1bc/0x360
[    4.463866]  kthread+0x14c/0x220
[    4.463871]  ret_from_fork+0x10/0x20
[   77.265041] random: crng init done

Fortunately, at the time of creating of the auxiliary device, we already
know the correct entry so let's store it as the device's platform data.
We don't need to hold gpio_shared_lock in devm_gpiod_shared_get() as
we're not removing the entry or traversing the list anymore but we still
need to protect it from concurrent modification of its fields so add a
more fine-grained mutex.

Fixes: a060b8c ("gpiolib: implement low-level, shared GPIO support")
Reported-by: Dmitry Baryshkov <dmitry.baryshkov@oss.qualcomm.com>
Closes: https://lore.kernel.org/all/fimuvblfy2cmn7o4wzcxjzrux5mwhvlvyxfsgeqs6ore2xg75i@ax46d3sfmdux/
Signed-off-by: Bartosz Golaszewski <bartosz.golaszewski@linaro.org>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

dependencies Pull requests that update a dependency file

Projects

None yet

Development

Successfully merging this pull request may close these issues.

2 participants