Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Symbolics extension. #187

Merged
merged 6 commits into from
Jun 28, 2023
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
support all ad functions in Solvers
  • Loading branch information
longemen3000 committed Jun 28, 2023
commit 24a7fc59bab29b058bc1a9411a13c8c6cef23ed2
144 changes: 129 additions & 15 deletions ext/ClapeyronSymbolicsExt.jl
Original file line number Diff line number Diff line change
@@ -1,33 +1,147 @@
module ClapeyronSymbolicsExt
using Clapeyron
using Symbolics
using Clapeyron
using Clapeyron.ForwardDiff
using Clapeyron.Solvers
using Clapeyron.EoSFunctions

using Clapeyron:log1p,log,sqrt
using Symbolics

Symbolics.@register_symbolic Clapeyron.Solvers.log(x)
Symbolics.@register_symbolic Clapeyron.Solvers.log1p(x)
Symbolics.@register_symbolic Clapeyron.Solvers.sqrt(x)
using Clapeyron: log1p,log,sqrt,^
using Clapeyron: SA

Symbolics.derivative(::typeof(log), args::NTuple{1,Any}, ::Val) where {N} = 1/args[1]
Symbolics.derivative(::typeof(log1p), args::NTuple{1,Any}, ::Val) where {N} = 1/(1 + args[1])
Symbolics.derivative(::typeof(sqrt), args::NTuple{1,Any}, ::Val) where {N} = 1 / (2sqrt(args[1]))
Solvers.log(x::Num) = Base.log(x)
Solvers.log1p(x::Num) = Base.log1p(x)
Solvers.sqrt(x::Num) = Base.log1p(x)
EoSFunctions.xlogx(x::Num,k) = x*Base.log(x*k)
EoSFunctions.xlogx(x::Num) = x*Base.log(x)
Solvers.:^(x::Num,y) = Base.:^(x,y)
Solvers.:^(x,y::Num) = Base.:^(x,y)
Solvers.:^(x::Num,y::Int) = Base.:^(x,y)
Solvers.:^(x::Num,y::Num) = Base.:^(x,y)

function Solvers.derivative(f::F,x::Symbolics.Num) where {F}
fx = f(x)
dfx = Symbolics.derivative(fx,x)
Symbolics.simplify(dfx)
end

function Solvers.gradient(f::F,x::A) where {F,A<:AbstractArray{N},N::Symbolics.Num}
function Solvers.gradient(f::F,x::A) where {F,A<:AbstractArray{Symbolics.Num}}
fx = f(x)
dfx = Symbolics.gradient(fx,x)
Symbolics.simplify(dfx)
Symbolics.gradient(fx,x)
end

function Solvers.hessian(f::F,x::A) where {F,A<:AbstractArray{N},N::Symbolics.Num}
function Solvers.hessian(f::F,x::A) where {F,A<:AbstractArray{Symbolics.Num}}
fx = f(x)
dfx = Symbolics.gradient(fx,x)
Symbolics.simplify(dfx)
Symbolics.hessian(fx,x)
end
#=
function Solvers.:^(x::Num, y::ForwardDiff.Dual{Ty}) where Ty
_y = ForwardDiff.value(y)
fy = x^_y
dy = log(x)*fy
ForwardDiff.Dual{Ty}(fy, dy * ForwardDiff.partials(y))
end

function Solvers.:^(x::ForwardDiff.Dual{Tx},y::Symbolics.Num) where Tx
_x = ForwardDiff.value(x)
fx = _x^y
dx = y*_x^(y-1)
#partials(x) * y * ($f)(v, y - 1)
ForwardDiff.Dual{Tx}(fx, dx * ForwardDiff.partials(x))
end

function Solvers.:^(x::ForwardDiff.Dual{Tx,Num},y::Int) where Tx
_x = ForwardDiff.value(x)
fx = _x^y
dx = y*_x^(y-1)
#partials(x) * y * ($f)(v, y - 1)
ForwardDiff.Dual{Tx}(fx, dx * ForwardDiff.partials(x))
end
=#

function Clapeyron.∂f∂V(model,V::Num,T,z)
eos_v = eos(model,V,T,z)
return Symbolics.derivative(eos_v,V)
end

function Clapeyron.∂f∂T(model,V::Num,T,z)
eos_T = eos(model,V,T,z)
return Symbolics.derivative(eos_T,T)
end

function Solvers.f∂f(f::F, x::Num) where {F}
fx = f(x)
return fx,Symbolics.derivative(fx,x)
end

function Solvers.f∂f∂2f(f::F, x::Num) where {F}
fx,dfx = Solvers.f∂f(f,x)
return fx,dfx,Symbolics.derivative(dfx,x)
end

function fgradf2_sym(f,V,T)
fvt = f(V,T)
dv = Symbolics.derivative(fvt,V)
dT = Symbolics.derivative(fvt,T)
return fvt,SA[dv,dT]
end

function Solvers.fgradf2(f,V::Num,T)
@variables T̃
fvt,dvt = fgradf2_sym(f,V,T̃)
t_dict = Dict(T̃ => T)
fvt,Symbolics.substitute(dvt,t_dict)
end

function Solvers.fgradf2(f,V,T::Num)
@variables Ṽ
fvt,dvt = fgradf2_sym(f,Ṽ,T)
v_dict = Dict(Ṽ => V)
fvt,Symbolics.substitute(dvt,v_dict)
end

Solvers.fgradf2(f,V::Num,T::Num) = fgradf2_sym(f,V,T)

gradient2_sym(f,V,T) = last(fgradf2_sym(f,V,T))

function Solvers.gradient2(f,V::Num,T)
@variables T̃
dvt = gradient2_sym(f,V,T̃)
t_dict = Dict(T̃ => T)
Symbolics.substitute(dvt,t_dict)
end

function Solvers.gradient2(f,V,T::Num)
@variables Ṽ
dvt = gradient2_sym(f,Ṽ,T)
v_dict = Dict(Ṽ => V)
Symbolics.substitute(dvt,v_dict)
end

Solvers.gradient2(f,V::Num,T::Num) = gradient2_sym(f,V,T)

function ∂2_sym(f,V,T)
fvt,gvt = fgradf2_sym(f,V,T)
x = SA[V,T]
hvt = Symbolics.jacobian(gvt,x)
return fvt,gvt,hvt
end

function Solvers.∂2(f,V::Num,T)
@variables T̃
fvt,gvt,hvt = ∂2_sym(f,V,T̃)
t_dict = Dict(T̃ => T)
fvt,Symbolics.substitute(gvt,t_dict),Symbolics.substitute(hvt,t_dict)
end

function Solvers.∂2(f,V,T::Num)
@variables Ṽ
fvt,gvt,hvt = ∂2_sym(f,Ṽ,T)
v_dict = Dict(Ṽ => V)
fvt,Symbolics.substitute(gvt,v_dict),Symbolics.substitute(hvt,v_dict)
end

Solvers.∂2(f,V::Num,T::Num) = ∂2_sym(f,V,T)


end #module
4 changes: 2 additions & 2 deletions src/models/Activity/equations.jl
Original file line number Diff line number Diff line change
Expand Up @@ -18,12 +18,12 @@ end
#for use in models that have gibbs free energy defined.
function activity_coefficient(model::ActivityModel,p,T,z)
X = gradient_type(p,T,z)
return exp.(ForwardDiff.gradient(x->excess_gibbs_free_energy(model,p,T,x),z)/(R̄*T))::X
return exp.(Solvers.gradient(x->excess_gibbs_free_energy(model,p,T,x),z)/(R̄*T))::X
end

function test_activity_coefficient(model::ActivityModel,p,T,z)
X = gradient_type(p,T,z)
return exp.(ForwardDiff.gradient(x->excess_gibbs_free_energy(model,p,T,x),z)/(R̄*T))::X
return exp.(Solvers.gradient(x->excess_gibbs_free_energy(model,p,T,x),z)/(R̄*T))::X
end

x0_sat_pure(model::ActivityModel,T) = x0_sat_pure(model.puremodel[1],T)
Expand Down
1 change: 0 additions & 1 deletion src/models/ideal/ideal.jl
Original file line number Diff line number Diff line change
@@ -1,6 +1,5 @@

function eos(model::IdealModel, V, T, z=SA[1.0])
negative_vt(V,T) && return nan_num(V,T,z)
return N_A*k_B*sum(z)*T * a_ideal(model,V,T,z)
end

Expand Down
2 changes: 1 addition & 1 deletion src/modules/solvers/Solvers.jl
Original file line number Diff line number Diff line change
Expand Up @@ -48,8 +48,8 @@ function x_sol(res::NLSolvers.ConvergenceInfo{NLSolvers.BrentMin{Float64}})
return res.info.x
end
include("poly.jl")
include("ad.jl")
include("nanmath.jl")
include("ad.jl")
include("nlsolve.jl")
include("fixpoint/fixpoint.jl")
include("fixpoint/ADNewton.jl")
Expand Down