Skip to content

Unable to run the script (run_partslip.py) #6

@jayaramreddy10

Description

@jayaramreddy10

Hi,

Thanks for releasing the code. I am getting below issue when I try to run partslip script with masks.

Traceback (most recent call last):
File "run_partslip.py", line 63, in
Infer(f"./data/test/{category}/{model}/pc.ply", category, model, partnete_meta[category], zero_shot=False, save_dir=f"./result_ps/{category}/{model}")
File "run_partslip.py", line 47, in Infer
masks = glip_inference(glip_demo, save_dir, part_names, sam_predictor, num_views=num_views)
File "/home/jayaram/PartSLIP2/src/glip_inference.py", line 70, in glip_inference
result, top_predictions = glip_demo.run_on_web_image(image, part_names, 0.5)
File "/home/jayaram/PartSLIP2/GLIP/maskrcnn_benchmark/engine/predictor_glip.py", line 140, in run_on_web_image
predictions = self.compute_prediction(original_image, original_caption, custom_entity)
File "/home/jayaram/PartSLIP2/GLIP/maskrcnn_benchmark/engine/predictor_glip.py", line 220, in compute_prediction
predictions = self.model(image_list, captions=[original_caption], positive_map=positive_map_label_to_token)
File "/home/jayaram/miniconda3/envs/partslip2p38/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
return forward_call(*input, **kwargs)
File "/home/jayaram/PartSLIP2/GLIP/maskrcnn_benchmark/modeling/detector/generalized_vl_rcnn.py", line 284, in forward
proposals, proposal_losses, fused_visual_features = self.rpn(images, visual_features, targets, language_dict_features, positive_map,
File "/home/jayaram/miniconda3/envs/partslip2p38/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
return forward_call(*input, **kwargs)
File "/home/jayaram/PartSLIP2/GLIP/maskrcnn_benchmark/modeling/rpn/vldyhead.py", line 920, in forward
proj_tokens, contrastive_logits, dot_product_logits, mlm_logits, shallow_img_emb_feats, fused_visual_features = self.head(features,
File "/home/jayaram/miniconda3/envs/partslip2p38/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
return forward_call(*input, **kwargs)
File "/home/jayaram/PartSLIP2/GLIP/maskrcnn_benchmark/modeling/rpn/vldyhead.py", line 739, in forward
dyhead_tower = self.dyhead_tower(feat_inputs)
File "/home/jayaram/miniconda3/envs/partslip2p38/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
return forward_call(*input, **kwargs)
File "/home/jayaram/miniconda3/envs/partslip2p38/lib/python3.8/site-packages/torch/nn/modules/container.py", line 141, in forward
input = module(input)
File "/home/jayaram/miniconda3/envs/partslip2p38/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
return forward_call(*input, **kwargs)
File "/home/jayaram/PartSLIP2/GLIP/maskrcnn_benchmark/modeling/rpn/vldyhead.py", line 228, in forward
next_x = [self.relu(item) for item in next_x]
File "/home/jayaram/PartSLIP2/GLIP/maskrcnn_benchmark/modeling/rpn/vldyhead.py", line 228, in
next_x = [self.relu(item) for item in next_x]
File "/home/jayaram/miniconda3/envs/partslip2p38/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
return forward_call(*input, **kwargs)
File "/home/jayaram/PartSLIP2/GLIP/maskrcnn_benchmark/layers/dyrelu.py", line 87, in forward
y = self.fc(y).view(b, self.oup * self.exp, 1, 1)
File "/home/jayaram/miniconda3/envs/partslip2p38/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
return forward_call(*input, **kwargs)
File "/home/jayaram/miniconda3/envs/partslip2p38/lib/python3.8/site-packages/torch/nn/modules/container.py", line 141, in forward
input = module(input)
File "/home/jayaram/miniconda3/envs/partslip2p38/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
return forward_call(*input, **kwargs)
File "/home/jayaram/miniconda3/envs/partslip2p38/lib/python3.8/site-packages/torch/nn/modules/linear.py", line 103, in forward
return F.linear(input, self.weight, self.bias)
File "/home/jayaram/miniconda3/envs/partslip2p38/lib/python3.8/site-packages/torch/nn/functional.py", line 1848, in linear
return torch._C._nn.linear(input, weight, bias)
RuntimeError: CUDA error: CUBLAS_STATUS_INVALID_VALUE when calling cublasSgemm( handle, opa, opb, m, n, k, &alpha, a, lda, b, ldb, &beta, c, ldc)

Below are the library versions:

OS: Ubuntu 22.04
Python: 3.8.19 (I had to go for 3.8 because I was not able to install pytorch3d with 3.9, had an issue with below import command
from pytorch3d.io import IO)
Cuda: 11.3
Torch: 1.10.0

Please let me know if you need any other details?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions