forked from jmzeng1314/my-R
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
92961b1
commit e1dd297
Showing
3 changed files
with
227 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,215 @@ | ||
rm(list=ls()) | ||
library(reshape2) | ||
library(edgeR) | ||
library(DESeq2) | ||
|
||
setwd("G:/mRNA/DEG") | ||
a=read.table('hisat2_mm10_htseq.txt',stringsAsFactors = F) | ||
###################################################################### | ||
#ESCTSA01.geneCounts Nek1 2790 | ||
#ESCTSA01.geneCounts Nek10 18 | ||
#ESCTSA01.geneCounts Nek11 2 | ||
#ESCTSA01.geneCounts Nek2 4945 | ||
###################################################################### | ||
colnames(a)=c('sample','gene','reads') | ||
exprSet=dcast(a,gene~sample) | ||
head(exprSet) | ||
|
||
# write.table(exprSet[grep("^__",exprSet$gene),],'hisat2.stats.txt',quote=F,sep='\t') | ||
# exprSet=exprSet[!grepl("^__",exprSet$gene),] | ||
|
||
geneLists=exprSet[,1] | ||
exprSet=exprSet[,-1] | ||
head(exprSet) | ||
|
||
rownames(exprSet)=geneLists | ||
colnames(exprSet)=do.call(rbind,strsplit(colnames(exprSet),'\\.'))[,1] | ||
|
||
write.csv(exprSet,'raw_reads_matrix.csv') | ||
|
||
keepGene=rowSums(cpm(exprSet)>0) >=2 | ||
table(keepGene);dim(exprSet) | ||
dim(exprSet[keepGene,]) | ||
exprSet=exprSet[keepGene,] | ||
rownames(exprSet)=geneLists[keepGene] | ||
|
||
str(exprSet) | ||
|
||
group_list=c('control','control','treat_12','treat_12','treat_2','treat_2') | ||
|
||
write.csv(exprSet,'filter_reads_matrix.csv' ) | ||
|
||
|
||
|
||
###################################################################### | ||
################### Firstly for DEseq2 ##################### | ||
###################################################################### | ||
if(T){ | ||
|
||
suppressMessages(library(DESeq2)) | ||
(colData <- data.frame(row.names=colnames(exprSet), group_list=group_list) ) | ||
dds <- DESeqDataSetFromMatrix(countData = exprSet, | ||
colData = colData, | ||
design = ~ group_list) | ||
dds <- DESeq(dds) | ||
png("qc_dispersions.png", 1000, 1000, pointsize=20) | ||
plotDispEsts(dds, main="Dispersion plot") | ||
dev.off() | ||
|
||
|
||
rld <- rlogTransformation(dds) | ||
exprMatrix_rlog=assay(rld) | ||
write.csv(exprMatrix_rlog,'exprMatrix.rlog.csv' ) | ||
|
||
normalizedCounts1 <- t( t(counts(dds)) / sizeFactors(dds) ) | ||
# normalizedCounts2 <- counts(dds, normalized=T) # it's the same for the tpm value | ||
# we also can try cpm or rpkm from edgeR pacage | ||
exprMatrix_rpm=as.data.frame(normalizedCounts1) | ||
head(exprMatrix_rpm) | ||
write.csv(exprMatrix_rpm,'exprMatrix.rpm.csv' ) | ||
|
||
png("DEseq_RAWvsNORM.png",height = 800,width = 800) | ||
par(cex = 0.7) | ||
n.sample=ncol(exprSet) | ||
if(n.sample>40) par(cex = 0.5) | ||
cols <- rainbow(n.sample*1.2) | ||
par(mfrow=c(2,2)) | ||
boxplot(exprSet, col = cols,main="expression value",las=2) | ||
boxplot(exprMatrix_rlog, col = cols,main="expression value",las=2) | ||
hist(as.matrix(exprSet)) | ||
hist(exprMatrix_rlog) | ||
dev.off() | ||
|
||
library(RColorBrewer) | ||
(mycols <- brewer.pal(8, "Dark2")[1:length(unique(group_list))]) | ||
cor(as.matrix(exprSet)) | ||
# Sample distance heatmap | ||
sampleDists <- as.matrix(dist(t(exprMatrix_rlog))) | ||
#install.packages("gplots",repos = "http://cran.us.r-project.org") | ||
library(gplots) | ||
png("qc-heatmap-samples.png", w=1000, h=1000, pointsize=20) | ||
heatmap.2(as.matrix(sampleDists), key=F, trace="none", | ||
col=colorpanel(100, "black", "white"), | ||
ColSideColors=mycols[group_list], RowSideColors=mycols[group_list], | ||
margin=c(10, 10), main="Sample Distance Matrix") | ||
dev.off() | ||
|
||
cor(exprMatrix_rlog) | ||
|
||
|
||
res <- results(dds, contrast=c("group_list","treat_2","control")) | ||
resOrdered <- res[order(res$padj),] | ||
head(resOrdered) | ||
DEG_treat_2=as.data.frame(resOrdered) | ||
write.csv(DEG_treat_2,"DEG_treat_2_deseq2.results.csv") | ||
|
||
res <- results(dds, contrast=c("group_list","treat_12","control")) | ||
resOrdered <- res[order(res$padj),] | ||
head(resOrdered) | ||
DEG_treat_12=as.data.frame(resOrdered) | ||
write.csv(DEG_treat_12,"DEG_treat_12_deseq2.results.csv") | ||
|
||
|
||
|
||
} | ||
|
||
###################################################################### | ||
################### Then for edgeR ##################### | ||
###################################################################### | ||
if(T){ | ||
|
||
library(edgeR) | ||
d <- DGEList(counts=exprSet,group=factor(group_list)) | ||
d$samples$lib.size <- colSums(d$counts) | ||
d <- calcNormFactors(d) | ||
d$samples | ||
|
||
## The calcNormFactors function normalizes for RNA composition by finding a set of scaling | ||
## factors for the library sizes that minimize the log-fold changes between the samples for most | ||
## genes. The default method for computing these scale factors uses a trimmed mean of Mvalues | ||
## (TMM) between each pair of samples | ||
|
||
png('edgeR_MDS.png') | ||
plotMDS(d, method="bcv", col=as.numeric(d$samples$group)) | ||
dev.off() | ||
|
||
# The glm approach to multiple groups is similar to the classic approach, but permits more general comparisons to be made | ||
|
||
dge=d | ||
|
||
design <- model.matrix(~0+factor(group_list)) | ||
rownames(design)<-colnames(dge) | ||
colnames(design)<-levels(factor(group_list)) | ||
|
||
dge <- estimateGLMCommonDisp(dge,design) | ||
dge <- estimateGLMTrendedDisp(dge, design) | ||
dge <- estimateGLMTagwiseDisp(dge, design) | ||
|
||
fit <- glmFit(dge, design) | ||
|
||
lrt <- glmLRT(fit, contrast=c(-1,1,0)) | ||
nrDEG=topTags(lrt, n=nrow(exprSet)) | ||
nrDEG=as.data.frame(nrDEG) | ||
head(nrDEG) | ||
write.csv(nrDEG,"DEG_treat_12_edgeR.csv",quote = F) | ||
|
||
lrt <- glmLRT(fit, contrast=c(-1,0,1) ) | ||
nrDEG=topTags(lrt, n=nrow(exprSet)) | ||
nrDEG=as.data.frame(nrDEG) | ||
head(nrDEG) | ||
write.csv(nrDEG,"DEG_treat_2_edgeR.csv",quote = F) | ||
summary(decideTests(lrt)) | ||
plotMD(lrt) | ||
abline(h=c(-1, 1), col="blue") | ||
} | ||
|
||
###################################################################### | ||
################### Then for limma/voom ################# | ||
###################################################################### | ||
|
||
|
||
suppressMessages(library(limma)) | ||
design <- model.matrix(~0+factor(group_list)) | ||
colnames(design)=levels(factor(group_list)) | ||
rownames(design)=colnames(exprSet) | ||
|
||
dge <- DGEList(counts=exprSet) | ||
dge <- calcNormFactors(dge) | ||
logCPM <- cpm(dge, log=TRUE, prior.count=3) | ||
|
||
v <- voom(dge,design,plot=TRUE, normalize="quantile") | ||
fit <- lmFit(v, design) | ||
|
||
group_list | ||
cont.matrix=makeContrasts(contrasts=c('treat_12-control','treat_2-control'),levels = design) | ||
fit2=contrasts.fit(fit,cont.matrix) | ||
fit2=eBayes(fit2) | ||
|
||
tempOutput = topTable(fit2, coef='treat_12-control', n=Inf) | ||
DEG_treat_12_limma_voom = na.omit(tempOutput) | ||
write.csv(DEG_treat_12_limma_voom,"DEG_treat_12_limma_voom.csv",quote = F) | ||
|
||
tempOutput = topTable(fit2, coef='treat_2-control', n=Inf) | ||
DEG_treat_2_limma_voom = na.omit(tempOutput) | ||
write.csv(DEG_treat_2_limma_voom,"DEG_treat_2_limma_voom.csv",quote = F) | ||
|
||
|
||
|
||
png("limma_voom_RAWvsNORM.png",height = 600,width = 600) | ||
exprSet_new=v$E | ||
par(cex = 0.7) | ||
n.sample=ncol(exprSet) | ||
if(n.sample>40) par(cex = 0.5) | ||
cols <- rainbow(n.sample*1.2) | ||
par(mfrow=c(2,2)) | ||
boxplot(exprSet, col = cols,main="expression value",las=2) | ||
boxplot(exprSet_new, col = cols,main="expression value",las=2) | ||
hist(as.matrix(exprSet)) | ||
hist(exprSet_new) | ||
dev.off() | ||
|
||
|
||
|
||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters