This repository demonstrates 7 proven techniques to optimize API performance, offering concrete implementations, comprehensive benchmarks, and practical insights for production applications.
.
├── api/ # Main API service
│ ├── routes/ # API route handlers
│ ├── techniques/ # Optimization implementations
│ ├── app.py # FastAPI application
│ ├── models.py # SQLAlchemy models
│ └── requirements.txt # API dependencies
├── benchmarks/ # Benchmarking suite
│ ├── data/ # Sample data for tests
│ ├── techniques/ # Individual benchmark implementations
│ ├── requirements.txt # Benchmark dependencies
│ └── run.py # Benchmark runner
├── databases/ # Database configurations
│ ├── postgres/ # PostgreSQL init scripts
│ └── redis/ # Redis configuration
└── docker-compose.yml # Service orchestration
| Technique | Description | Average Improvement |
|---|---|---|
| Connection Pooling | Reuse database connections | ~113x faster |
| Caching | Redis-based data caching | ~20x faster |
| Pagination | Efficient data chunking | ~2.6x faster |
| Async Logging | Non-blocking logging | ~1.4x faster |
| N+1 Query Prevention | Optimized query patterns | ~1.5x faster |
| Compression | Response payload reduction | ~1.1x faster |
| JSON Serialization | Optimized data transformation | Stable baseline |
-
Clone the repository:
git clone https://github.com/zvdy/api-performance.git cd api-performance -
Start the services:
docker-compose up -d
-
Run benchmarks:
# Run all benchmarks python benchmarks/run.py # Run specific benchmark python benchmarks/run.py --technique compression --iterations 10 --concurrency 10
The project includes a comprehensive benchmarking suite that measures:
- Response time (ms)
- Requests per second
- Improvement factor vs baseline
- Technique-specific metrics (e.g., compression ratio)
Example benchmark command:
python benchmarks/run.py --technique compression --iterations 10 --concurrency 10Parameters:
--technique: Specific technique to benchmark (optional)--iterations: Number of test iterations (default: 3)--concurrency: Number of concurrent requests (default: 10)--output-dir: Custom output directory (optional)
Results are saved in the reports/ directory with timestamps.
- Configurable connection pool size
- Connection health monitoring
- Automatic connection recycling
- AsyncSession support with SQLAlchemy
- Redis-based LRU caching
- Configurable TTL
- Automatic cache invalidation
- Circuit breaker pattern
- Cursor-based pagination
- Efficient COUNT queries
- HATEOAS-compliant responses
- Optimized for large datasets
- Non-blocking log operations
- Structured logging format
- Performance monitoring
- Configurable log levels
- Strategic JOIN operations
- Relationship loading optimization
- Query performance monitoring
- Efficient indexing strategy
- Content-Encoding negotiation
- Brotli compression (quality 11)
- Size-based compression decisions
- Compression ratio monitoring
- orjson for optimal performance
- Custom serializers for complex types
- Memory optimization
- Content-type negotiation
- Docker and Docker Compose
- Python 3.10+
- PostgreSQL 15
- Redis 7
-
Install API dependencies:
cd api pip install -r requirements.txt -
Install benchmark dependencies:
cd benchmarks pip install -r requirements.txt
# Run all benchmarks
python benchmarks/run.py
# Run specific benchmark
python benchmarks/run.py --technique compression- Fork the repository
- Create your feature branch
- Commit your changes
- Push to the branch
- Create a Pull Request
This project is licensed under the MIT License - see the LICENSE file for details.