Skip to content

A comprehensive demonstration of 7 proven API optimization techniques implemented in FastAPI, with benchmarking tools to measure and compare performance improvements.

License

Notifications You must be signed in to change notification settings

zvdy/api-performance

Repository files navigation

API Performance Optimization Techniques

This repository demonstrates 7 proven techniques to optimize API performance, offering concrete implementations, comprehensive benchmarks, and practical insights for production applications.

Project Structure

.
├── api/                    # Main API service
│   ├── routes/            # API route handlers
│   ├── techniques/        # Optimization implementations
│   ├── app.py            # FastAPI application
│   ├── models.py         # SQLAlchemy models
│   └── requirements.txt   # API dependencies
├── benchmarks/            # Benchmarking suite
│   ├── data/             # Sample data for tests
│   ├── techniques/       # Individual benchmark implementations
│   ├── requirements.txt  # Benchmark dependencies
│   └── run.py           # Benchmark runner
├── databases/            # Database configurations
│   ├── postgres/        # PostgreSQL init scripts
│   └── redis/           # Redis configuration
└── docker-compose.yml    # Service orchestration

Optimization Techniques

Technique Description Average Improvement
Connection Pooling Reuse database connections ~113x faster
Caching Redis-based data caching ~20x faster
Pagination Efficient data chunking ~2.6x faster
Async Logging Non-blocking logging ~1.4x faster
N+1 Query Prevention Optimized query patterns ~1.5x faster
Compression Response payload reduction ~1.1x faster
JSON Serialization Optimized data transformation Stable baseline

Quick Start

  1. Clone the repository:

    git clone https://github.com/zvdy/api-performance.git
    cd api-performance
  2. Start the services:

    docker-compose up -d
  3. Run benchmarks:

    # Run all benchmarks
    python benchmarks/run.py
    
    # Run specific benchmark
    python benchmarks/run.py --technique compression --iterations 10 --concurrency 10

Benchmarking

The project includes a comprehensive benchmarking suite that measures:

  • Response time (ms)
  • Requests per second
  • Improvement factor vs baseline
  • Technique-specific metrics (e.g., compression ratio)

Example benchmark command:

python benchmarks/run.py --technique compression --iterations 10 --concurrency 10

Parameters:

  • --technique: Specific technique to benchmark (optional)
  • --iterations: Number of test iterations (default: 3)
  • --concurrency: Number of concurrent requests (default: 10)
  • --output-dir: Custom output directory (optional)

Results are saved in the reports/ directory with timestamps.

Implementation Details

1. Connection Pooling

  • Configurable connection pool size
  • Connection health monitoring
  • Automatic connection recycling
  • AsyncSession support with SQLAlchemy

2. Caching

  • Redis-based LRU caching
  • Configurable TTL
  • Automatic cache invalidation
  • Circuit breaker pattern

3. Pagination

  • Cursor-based pagination
  • Efficient COUNT queries
  • HATEOAS-compliant responses
  • Optimized for large datasets

4. Async Logging

  • Non-blocking log operations
  • Structured logging format
  • Performance monitoring
  • Configurable log levels

5. N+1 Query Prevention

  • Strategic JOIN operations
  • Relationship loading optimization
  • Query performance monitoring
  • Efficient indexing strategy

6. Compression

  • Content-Encoding negotiation
  • Brotli compression (quality 11)
  • Size-based compression decisions
  • Compression ratio monitoring

7. JSON Serialization

  • orjson for optimal performance
  • Custom serializers for complex types
  • Memory optimization
  • Content-type negotiation

Development

Prerequisites

  • Docker and Docker Compose
  • Python 3.10+
  • PostgreSQL 15
  • Redis 7

Local Setup

  1. Install API dependencies:

    cd api
    pip install -r requirements.txt
  2. Install benchmark dependencies:

    cd benchmarks
    pip install -r requirements.txt

Running Tests

# Run all benchmarks
python benchmarks/run.py

# Run specific benchmark
python benchmarks/run.py --technique compression

Contributing

  1. Fork the repository
  2. Create your feature branch
  3. Commit your changes
  4. Push to the branch
  5. Create a Pull Request

License

This project is licensed under the MIT License - see the LICENSE file for details.

About

A comprehensive demonstration of 7 proven API optimization techniques implemented in FastAPI, with benchmarking tools to measure and compare performance improvements.

Topics

Resources

License

Stars

Watchers

Forks