It is the source code of CCKS 2021 “基于转移的快速精准的语义依存图分析”, which is based on supar.
python -m supar.cmds.transition_based_semantic_dependency train -b \
-p exp/dual-k10-do0.2-acti-PAS-s2/model \
-d 5 \
--batch-size 3000 \
--decode_mode dual \
--seed 2 \
--dynamic \
--pro 0.2 \
--k 10 \
--train data/sdp/PAS/train.conllu \
--dev data/sdp/PAS/dev.conllu \
--test data/sdp/PAS/test.conllu \
--feat tag,char,lemma
- with "--dynamic" means training with dynamic
- --k 10 means dynamic training after 10 epochs
- --pro 0.2 means the probability to not take predicted actions
- -d 5 means using the 5th gpu
python -m supar.cmds.transition_based_semantic_dependency evaluate --data data/sdp/PAS_OOD/test.conllu \
-p exp/dual-k10-do0.2-acti-PAS-s2/model \
--decode_mode dual \
--batch_decode \
-d 5
- --batch_decode means using our batch decoding
python -m supar.cmds.transition_based_semantic_dependency predict --data data/sdp/PAS_OOD/test.conllu \
-p exp/dual-k10-do0.2-acti-PAS-s2/model \
--pred PAS_OOD_pred.conllu
--decode_mode dual \
-d 5
- --pred means saving the predicted results to the file PAS_OOD_pred.conllu