Skip to content

zjmorgan/nxs-computational-tutorial

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

41 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

nxs-computational-tutorial-2024

Agenda

Set up

  1. Log into analysis.sns.gov
  2. Run script provided by Jean B. in /EXAMPLES/NXS2024/

Intro presentation (powerpoint) 30-45 mins.

  • What is scientific software (MG)
  • Version control: Git and GitHub (MG)
  • Environment management (python env and conda, pip) (JB):
  • Running python options: scripts, python interpreter, IDE, jupyter (JB)
  • Intro to file systems at ORNL. Where are my neutron data stored? Oncat (AS)

Tutorial

Malcolm tutorial

  • create a git repo

Jean tutorial

  • Open notebook, Explanation of notebook (shift enter, shift enter...)
  • Cell: imports:
  • Exercise 1: Import data from ascii to numpy array. Do this multiple ways. Mention pandas.
  • Exercise 2: Plot with matplotlib. Make it interactive. Show errors?
  • Exercise 3: Extend script to for loop over multiple files
  • Exercise 4: Create widget to do Exercise 3.

BREAK (AS)

Zach Tutorial 2

  • Exercise 4 (SciPy): Set up fit to a peak: initial conditions, define to fit, define residual, define fit range, interpret errors (variance-covariance matrix)
  • Exercise 5: Use LMFIT for same process.
  • Advanced Exercise 1: Event data: Inspect nxs file with HDFView,
  • Load neutron data and log metadata from nxs file with h5py.
  • Advanced Ex 2: histogram events (with log binning)
  • Super Advanced Ex 3: Re-use fitting script, fit peaks, plot position versus experimental log.