# generate preprocessed data and download portfolio returns
python data_prepare.py
# train models (selected models and K, for example)
python main.py --Model 'CA0 CA1 CA2 CA3' --K '1 2 3 4 5 6'
# analyze characteristics' importance (if needed)
python main.py --Model 'CA2 CA3' --K '5' --omit_char 'absacc acc age agr bm bm_ia cashdebt cashpr cfp cfp_ia chatoia chcsho chempia chinv chpmia convind currat depr divi divo dy egr ep gma grcapx grltnoa herf hire invest lev lgr mve_ia operprof orgcap pchcapx_ia pchcurrat pchdepr pchgm_pchsale pchquick pchsale_pchinvt pchsale_pchrect pchsale_pchxsga pchsaleinv pctacc ps quick rd rd_mve rd_sale realestate roic salecash saleinv salerec secured securedind sgr sin sp tang tb aeavol cash chtx cinvest ear ms nincr roaq roavol roeq rsup stdacc stdcf baspread beta betasq chmom dolvol idiovol ill indmom maxret mom12m mom1m mom36m mom6m mvel1 pricedelay retvol std_dolvol std_turn turn zerotrade'
# analyze models (calculate R^2, plot R^2 tables, bars and bias heatmap)
python analysis.py
-
Notifications
You must be signed in to change notification settings - Fork 0
zhusq20/machine-learning-in-fin-project2
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
About
No description, website, or topics provided.
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published