Skip to content

Commit

Permalink
add: 基于Pytorch的迁移学习图像分类
Browse files Browse the repository at this point in the history
  • Loading branch information
jindongwang committed Dec 21, 2017
1 parent 5c3481a commit 618c898
Showing 1 changed file with 5 additions and 3 deletions.
8 changes: 5 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -35,10 +35,9 @@ _ _ _
- 201711 运用贝叶斯网络建模label和domain的依赖关系:[GENERALIZING ACROSS DOMAINS VIA CROSS-GRADIENT TRAINING](https://openreview.net/pdf?id=r1Dx7fbCW)
- 20171126 李飞飞小组发在NIPS 2017的文章:[Label Efficient Learning of Transferable Representations acrosss Domains and Tasks](http://papers.nips.cc/paper/6621-label-efficient-learning-of-transferable-representations-acrosss-domains-and-tasks)。针对不同的domain、不同的feature、不同的label space,统一学习一个深度网络进行表征。
- 201711 ICCV 2017发表的文章:[Open set domain adaptation](http://openaccess.thecvf.com/content_iccv_2017/html/Busto_Open_Set_Domain_ICCV_2017_paper.html)。当source和target只共享某一些类别时,怎么处理?这个文章获得了ICCV 2017的Marr Prize Honorable Mention,值得好好研究。[我的解读](https://zhuanlan.zhihu.com/p/31230331)

- 201711 一个很好的深度学习+迁移学习的实践教程,有代码有数据,可以直接上手:[基于深度学习和迁移学习的识花实践](https://cosx.org/2017/10/transfer-learning/)

[更多...]((https://github.com/jindongwang/transferlearning/tree/master/doc/awesome_paper.md))

[更多...](https://github.com/jindongwang/transferlearning/tree/master/doc/awesome_paper.md)

- - -

Expand All @@ -54,6 +53,9 @@ _ _ _
什么是[负迁移(negative transfer)](https://www.zhihu.com/question/66492194/answer/242870418)

[迁移学习中的领域自适应方法](http://jd92.wang/assets/files/l12_da.pdf)

动手教程:很好的深度学习+迁移学习的实践教程,有代码有数据,可以直接上手:[基于深度学习和迁移学习的识花实践(Tensorflow)](https://cosx.org/2017/10/transfer-learning/) | [基于Pytorch的图像分类](https://github.com/miguelgfierro/sciblog_support/blob/master/A_Gentle_Introduction_to_Transfer_Learning/Intro_Transfer_Learning.ipynb)

- - -

### 2.迁移学习的综述文章
Expand Down

0 comments on commit 618c898

Please sign in to comment.