-
Notifications
You must be signed in to change notification settings - Fork 1.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
12 changed files
with
263 additions
and
9 deletions.
There are no files selected for viewing
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Oops, something went wrong.
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Oops, something went wrong.
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Oops, something went wrong.
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Oops, something went wrong.
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Oops, something went wrong.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,220 @@ | ||
""" | ||
Fast Marching Trees (FMT*) | ||
@author: huiming zhou | ||
""" | ||
|
||
import os | ||
import sys | ||
import math | ||
import random | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
import matplotlib.patches as patches | ||
|
||
sys.path.append(os.path.dirname(os.path.abspath(__file__)) + | ||
"/../../Sampling_based_Planning/") | ||
|
||
from Sampling_based_Planning.rrt_2D import env, plotting, utils | ||
|
||
|
||
class Node: | ||
def __init__(self, n): | ||
self.x = n[0] | ||
self.y = n[1] | ||
self.parent = None | ||
self.cost = np.inf | ||
|
||
|
||
class FMT: | ||
def __init__(self, x_start, x_goal, search_radius): | ||
self.x_init = Node(x_start) | ||
self.x_goal = Node(x_goal) | ||
self.search_radius = search_radius | ||
|
||
self.env = env.Env() | ||
self.plotting = plotting.Plotting(x_start, x_goal) | ||
self.utils = utils.Utils() | ||
|
||
self.fig, self.ax = plt.subplots() | ||
self.delta = self.utils.delta | ||
self.x_range = self.env.x_range | ||
self.y_range = self.env.y_range | ||
self.obs_circle = self.env.obs_circle | ||
self.obs_rectangle = self.env.obs_rectangle | ||
self.obs_boundary = self.env.obs_boundary | ||
|
||
self.V = set() | ||
self.V_unvisited = set() | ||
self.V_open = set() | ||
self.V_closed = set() | ||
self.sample_numbers = 1000 | ||
|
||
def Init(self): | ||
samples = self.SampleFree() | ||
|
||
self.x_init.cost = 0.0 | ||
self.V.add(self.x_init) | ||
self.V.update(samples) | ||
self.V_unvisited.update(samples) | ||
self.V_unvisited.add(self.x_goal) | ||
self.V_open.add(self.x_init) | ||
|
||
def Planning(self): | ||
self.Init() | ||
z = self.x_init | ||
n = self.sample_numbers | ||
rn = self.search_radius * math.sqrt((math.log(n) / n)) | ||
Visited = [] | ||
|
||
while z is not self.x_goal: | ||
V_open_new = set() | ||
X_near = self.Near(self.V_unvisited, z, rn) | ||
Visited.append(z) | ||
|
||
for x in X_near: | ||
Y_near = self.Near(self.V_open, x, rn) | ||
cost_list = {y: y.cost + self.Cost(y, x) for y in Y_near} | ||
y_min = min(cost_list, key=cost_list.get) | ||
|
||
if not self.utils.is_collision(y_min, x): | ||
x.parent = y_min | ||
V_open_new.add(x) | ||
self.V_unvisited.remove(x) | ||
x.cost = y_min.cost + self.Cost(y_min, x) | ||
|
||
self.V_open.update(V_open_new) | ||
self.V_open.remove(z) | ||
self.V_closed.add(z) | ||
|
||
if not self.V_open: | ||
print("open set empty!") | ||
break | ||
|
||
cost_open = {y: y.cost for y in self.V_open} | ||
z = min(cost_open, key=cost_open.get) | ||
|
||
# node_end = self.ChooseGoalPoint() | ||
path_x, path_y = self.ExtractPath() | ||
self.animation(path_x, path_y, Visited[1: len(Visited)]) | ||
|
||
def ChooseGoalPoint(self): | ||
Near = self.Near(self.V, self.x_goal, 2.0) | ||
cost = {y: y.cost + self.Cost(y, self.x_goal) for y in Near} | ||
|
||
return min(cost, key=cost.get) | ||
|
||
def ExtractPath(self): | ||
path_x, path_y = [], [] | ||
node = self.x_goal | ||
|
||
while node.parent: | ||
path_x.append(node.x) | ||
path_y.append(node.y) | ||
node = node.parent | ||
|
||
path_x.append(self.x_init.x) | ||
path_y.append(self.x_init.y) | ||
|
||
return path_x, path_y | ||
|
||
def Cost(self, x_start, x_end): | ||
if self.utils.is_collision(x_start, x_end): | ||
return np.inf | ||
else: | ||
return self.calc_dist(x_start, x_end) | ||
|
||
@staticmethod | ||
def calc_dist(x_start, x_end): | ||
return math.hypot(x_start.x - x_end.x, x_start.y - x_end.y) | ||
|
||
@staticmethod | ||
def Near(nodelist, z, rn): | ||
return {nd for nd in nodelist | ||
if 0 < (nd.x - z.x) ** 2 + (nd.y - z.y) ** 2 <= rn ** 2} | ||
|
||
def SampleFree(self): | ||
n = self.sample_numbers | ||
delta = self.utils.delta | ||
Sample = set() | ||
|
||
ind = 0 | ||
while ind < n: | ||
node = Node((random.uniform(self.x_range[0] + delta, self.x_range[1] - delta), | ||
random.uniform(self.y_range[0] + delta, self.y_range[1] - delta))) | ||
if self.utils.is_inside_obs(node): | ||
continue | ||
else: | ||
Sample.add(node) | ||
ind += 1 | ||
|
||
return Sample | ||
|
||
def animation(self, path_x, path_y, visited): | ||
self.plot_grid("Fast Marching Trees (FMT*)") | ||
|
||
for node in self.V: | ||
plt.plot(node.x, node.y, marker='.', color='lightgrey', markersize=3) | ||
|
||
count = 0 | ||
for node in visited: | ||
count += 1 | ||
plt.plot([node.x, node.parent.x], [node.y, node.parent.y], '-g') | ||
plt.gcf().canvas.mpl_connect( | ||
'key_release_event', | ||
lambda event: [exit(0) if event.key == 'escape' else None]) | ||
if count % 10 == 0: | ||
plt.pause(0.001) | ||
|
||
plt.plot(path_x, path_y, linewidth=2, color='red') | ||
plt.pause(0.01) | ||
plt.show() | ||
|
||
def plot_grid(self, name): | ||
|
||
for (ox, oy, w, h) in self.obs_boundary: | ||
self.ax.add_patch( | ||
patches.Rectangle( | ||
(ox, oy), w, h, | ||
edgecolor='black', | ||
facecolor='black', | ||
fill=True | ||
) | ||
) | ||
|
||
for (ox, oy, w, h) in self.obs_rectangle: | ||
self.ax.add_patch( | ||
patches.Rectangle( | ||
(ox, oy), w, h, | ||
edgecolor='black', | ||
facecolor='gray', | ||
fill=True | ||
) | ||
) | ||
|
||
for (ox, oy, r) in self.obs_circle: | ||
self.ax.add_patch( | ||
patches.Circle( | ||
(ox, oy), r, | ||
edgecolor='black', | ||
facecolor='gray', | ||
fill=True | ||
) | ||
) | ||
|
||
plt.plot(self.x_init.x, self.x_init.y, "bs", linewidth=3) | ||
plt.plot(self.x_goal.x, self.x_goal.y, "rs", linewidth=3) | ||
|
||
plt.title(name) | ||
plt.axis("equal") | ||
|
||
|
||
def main(): | ||
x_start = (18, 8) # Starting node | ||
x_goal = (37, 18) # Goal node | ||
|
||
fmt = FMT(x_start, x_goal, 40) | ||
fmt.Planning() | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters