-
Notifications
You must be signed in to change notification settings - Fork 1.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
281 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,278 @@ | ||
""" | ||
Batch Informed Trees (BIT*) | ||
@author: huiming zhou | ||
""" | ||
|
||
import os | ||
import sys | ||
import math | ||
import random | ||
import copy | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
import matplotlib.patches as patches | ||
|
||
sys.path.append(os.path.dirname(os.path.abspath(__file__)) + | ||
"/../../Sampling_based_Planning/") | ||
|
||
from Sampling_based_Planning.rrt_2D import env, plotting, utils | ||
|
||
|
||
class Node: | ||
def __init__(self, x, y): | ||
self.x = x | ||
self.y = y | ||
self.parent = None | ||
|
||
|
||
class Tree: | ||
def __init__(self, x_start, x_goal): | ||
self.x_start = x_start | ||
self.goal = x_goal | ||
|
||
self.r = np.inf | ||
self.V = set() | ||
self.E = set() | ||
self.QE = set() | ||
self.QV = set() | ||
|
||
self.V_old = set() | ||
|
||
|
||
class BITStar: | ||
def __init__(self, x_start, x_goal, eta, iter_max): | ||
self.x_start = Node(x_start[0], x_start[1]) | ||
self.x_goal = Node(x_goal[0], x_goal[1]) | ||
self.eta = eta | ||
self.iter_max = iter_max | ||
|
||
self.env = env.Env() | ||
self.plotting = plotting.Plotting(x_start, x_goal) | ||
self.utils = utils.Utils() | ||
|
||
self.fig, self.ax = plt.subplots() | ||
|
||
self.delta = self.utils.delta | ||
self.x_range = self.env.x_range | ||
self.y_range = self.env.y_range | ||
|
||
self.obs_circle = self.env.obs_circle | ||
self.obs_rectangle = self.env.obs_rectangle | ||
self.obs_boundary = self.env.obs_boundary | ||
|
||
self.Tree = Tree(self.x_start, self.x_goal) | ||
self.X_sample = set() | ||
self.g_T = dict() | ||
self.f_T = dict() | ||
|
||
def init(self): | ||
self.Tree.V.add(self.x_start) | ||
self.X_sample.add(self.x_goal) | ||
self.g_T[self.x_goal] = np.inf | ||
self.f_T[self.x_goal] = 0.0 | ||
self.g_T[self.x_start] = 0.0 | ||
self.f_T[self.x_start] = self.f_estimated(self.x_start) | ||
|
||
cMin, theta = self.calc_dist_and_angle(self.x_start, self.x_goal) | ||
C = self.RotationToWorldFrame(self.x_start, self.x_goal, cMin) | ||
xCenter = np.array([[(self.x_start.x + self.x_goal.x) / 2.0], | ||
[(self.x_start.y + self.x_goal.y) / 2.0], [0.0]]) | ||
|
||
return theta, cMin, xCenter, C | ||
|
||
def planning(self): | ||
eTheta, cMin, xCenter, C = self.init() | ||
|
||
for k in range(self.iter_max): | ||
if not self.Tree.QE and not self.Tree.QV: | ||
self.Prune(self.g_T[self.x_goal]) | ||
m = 200 | ||
self.X_sample.update(self.Sample(m, self.g_T[self.x_goal], cMin, xCenter, C)) | ||
self.Tree.V_old = copy.deepcopy(self.Tree.V) | ||
self.Tree.QV = copy.deepcopy(self.Tree.V) | ||
self.Tree.r = self.radius(len(self.Tree.V) + len(self.X_sample)) | ||
|
||
while self.BestVertexQueueValue() <= self.BestEdgeQueueValue(): | ||
self.ExpandVertex(self.BestInVertexQueue()) | ||
|
||
vm, xm = self.BestInEdgeQueue() | ||
self.Tree.QE.remove((vm, xm)) | ||
|
||
if self.g_T[vm] + self.calc_dist(vm, xm) + self.h_estimated(xm) < self.g_T[self.x_goal]: | ||
if self.g_estimated(vm) + self.cost(vm, xm) + self.h_estimated(xm) < self.g_T[self.x_goal]: | ||
if self.g_T[vm] + self.cost(vm, xm) < self.g_T[xm]: | ||
if xm in self.Tree.V: | ||
# remove edges | ||
for vl, vr in self.Tree.E: | ||
if vl == xm or vr == xm: | ||
self.Tree.E.remove((vl, vr)) | ||
else: | ||
self.X_sample.remove(xm) | ||
self.Tree.V.add(xm) | ||
self.Tree.QV.add(xm) | ||
|
||
self.Tree.E.add((vm, xm)) | ||
|
||
def ExpandVertex(self, v): | ||
self.Tree.QV.remove(v) | ||
X_near = {x for x in self.X_sample if self.calc_dist(x, v) <= self.Tree.r} | ||
|
||
for x in X_near: | ||
if self.g_estimated(v) + self.calc_dist(v, x) + self.h_estimated(x) < self.g_T[self.x_goal]: | ||
self.Tree.QE.add((v, x)) | ||
|
||
if v not in self.Tree.V_old: | ||
V_near = {w for w in self.Tree.V if self.calc_dist(w, v) <= self.Tree.r} | ||
|
||
for w in V_near: | ||
if (v, w) not in self.Tree.E and (w, v) not in self.Tree.E and \ | ||
self.g_estimated(v) + self.calc_dist(v, w) + self.h_estimated(w) < self.g_T[self.x_goal] and \ | ||
self.g_T[v] + self.calc_dist(v, w) < self.g_T[w]: | ||
self.Tree.QE.add((v, w)) | ||
|
||
def BestVertexQueueValue(self): | ||
if not self.Tree.QV: | ||
return np.inf | ||
|
||
return min(self.g_T[v] + self.h_estimated(v) for v in self.Tree.QV) | ||
|
||
def BestEdgeQueueValue(self): | ||
if not self.Tree.QE: | ||
return np.inf | ||
|
||
return min(self.g_T[el] + self.calc_dist(el, er) + self.h_estimated(er) | ||
for el, er in self.Tree.QE) | ||
|
||
def BestInVertexQueue(self): | ||
v_value = {v: self.g_T[v] + self.h_estimated(v) for v in self.Tree.QV} | ||
|
||
return min(v_value, key=v_value.get) | ||
|
||
def BestInEdgeQueue(self): | ||
e_value = {(el, er): self.g_T[el] + self.calc_dist(el, er) + self.h_estimated(er) | ||
for el, er in self.Tree.QE} | ||
|
||
return min(e_value, key=e_value.get) | ||
|
||
def radius(self, q): | ||
lambda_X = 0 | ||
sigma = math.pi ** 2 | ||
|
||
for x in self.Tree.V: | ||
if self.f_estimated(x) <= self.g_T[self.x_goal]: | ||
lambda_X += 1 | ||
|
||
return 2 * self.eta * 1.5 ** 0.5 * (lambda_X / sigma * math.log(q) / q) ** 0.5 | ||
|
||
def Sample(self, m, cMax, cMin, xCenter, C): | ||
if cMax < np.inf: | ||
Sample = self.SampleEllipsoid(m, cMax, cMin, xCenter, C) | ||
else: | ||
Sample = self.SampleFreeSpace(m) | ||
|
||
return Sample | ||
|
||
def SampleEllipsoid(self, m, cMax, cMin, xCenter, C): | ||
r = [cMax / 2.0, | ||
math.sqrt(cMax ** 2 - cMin ** 2) / 2.0, | ||
math.sqrt(cMax ** 2 - cMin ** 2) / 2.0] | ||
L = np.diag(r) | ||
|
||
ind = 0 | ||
delta = self.delta | ||
Sample = set() | ||
|
||
while ind < m: | ||
xBall = self.SampleUnitNBall() | ||
x_rand = C @ L @ xBall + xCenter | ||
node = Node(x_rand[0], x_rand[1]) | ||
not_in_obs = ~self.utils.is_inside_obs(node) | ||
in_x_range = self.x_range[0] + delta <= node.x <= self.x_range[1] - delta | ||
in_y_range = self.y_range[0] + delta <= node.y <= self.y_range[1] - delta | ||
|
||
if not_in_obs and in_x_range and in_y_range: | ||
Sample.add(node) | ||
ind += 1 | ||
|
||
return Sample | ||
|
||
def SampleFreeSpace(self, m): | ||
delta = self.utils.delta | ||
Sample = set() | ||
|
||
ind = 0 | ||
while ind < m: | ||
node = Node((random.uniform(self.x_range[0] + delta, self.x_range[1] - delta), | ||
random.uniform(self.y_range[0] + delta, self.y_range[1] - delta))) | ||
if self.utils.is_inside_obs(node): | ||
continue | ||
else: | ||
Sample.add(node) | ||
ind += 1 | ||
|
||
return Sample | ||
|
||
@staticmethod | ||
def SampleUnitNBall(): | ||
theta, r = random.uniform(0.0, 2 * math.pi), random.random() | ||
x = r * math.cos(theta) | ||
y = r * math.sin(theta) | ||
|
||
return np.array([[x], [y], [0.0]]) | ||
|
||
def Prune(self, c): | ||
for x in self.X_sample: | ||
if self.f_estimated(x) >= c: | ||
self.X_sample.remove(x) | ||
|
||
for v in self.Tree.V: | ||
if self.f_estimated(v) > c: | ||
self.Tree.V.remove(v) | ||
|
||
for v, w in self.Tree.E: | ||
if self.f_estimated(v) > c or self.f_estimated(w) > c: | ||
self.Tree.E.remove((v, w)) | ||
|
||
for v in self.Tree.V: | ||
if v.g_T == np.inf: | ||
self.X_sample.add(v) | ||
|
||
for v in self.Tree.V: | ||
if v.g_T == np.inf: | ||
self.Tree.V.remove(v) | ||
|
||
def cost(self, start, end): | ||
if self.utils.is_collision(start, end): | ||
return np.inf | ||
|
||
return self.calc_dist(start, end) | ||
|
||
def f_estimated(self, node): | ||
return self.g_estimated(node) + self.h_estimated(node) | ||
|
||
def g_estimated(self, node): | ||
return self.calc_dist(self.x_start, node) | ||
|
||
def h_estimated(self, node): | ||
return self.calc_dist(node, self.x_goal) | ||
|
||
@staticmethod | ||
def RotationToWorldFrame(x_start, x_goal, L): | ||
a1 = np.array([[(x_start.x - x_start.x) / L], | ||
[(x_goal.y - x_start.y) / L], [0.0]]) | ||
e1 = np.array([[1.0], [0.0], [0.0]]) | ||
M = a1 @ e1.T | ||
U, _, V_T = np.linalg.svd(M, True, True) | ||
C = U @ np.diag([1.0, 1.0, np.linalg.det(U) * np.linalg.det(V_T.T)]) @ V_T | ||
|
||
return C | ||
|
||
@staticmethod | ||
def calc_dist(start, end): | ||
return math.hypot(start.x - end.x, start.y - end.y) | ||
|
||
@staticmethod | ||
def calc_dist_and_angle(node_start, node_end): | ||
dx = node_end.x - node_start.x | ||
dy = node_end.y - node_start.y | ||
return math.hypot(dx, dy), math.atan2(dy, dx) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters