Skip to content

zhipeng-wei/TT

Repository files navigation

AAAI-2022 Paper

Boosting the Transferability of Video Adversarial Examples via Temporal Translation pdf

Environment

Recover the environment by

conda env create -f TemporalTranslation.yml

GPU infos

NVIDIA GeForce RTX 2080TI
NVIDIA-SMI 430.14       Driver Version: 430.14       CUDA Version: 10.2 

Attacked Dataset

The used datasets are sampled from UCF101 and Kinetics-400. Download attacked datasets from here. Change the UCF_DATA_ROOT and Kinetic_DATA_ROOT of utils.py into your dataset path.

Models

Non-local, SlowFast, TPN with ResNet-50 and ResNet-101 as backbones are used here.

UCF101

We fine-tune video models on UCF101. Download checkpoint files from here. Change the UCF_MODEL_ROOT of utils.py into your checkpoint path.

Kinetics-400

We use pretrained models on Kinetics-400 from gluoncv to conduct experiments.

Attack

Assign your output path to OPT_PATH of utils.py.

Generate adversarial examples.

python attack_kinetics.py/attack_ucf101.py --gpu 0 --batch_size 1 --model slowfast_resnet101 --attack_method TemporalTranslation --step 10 --file_prefix yours --momentum --kernlen 15 --move_type adj --kernel_mode gaussian
  • model: the white-box model
  • attack_method: TemporalTranslation(TT/TT-MI) or TemporalTranslation_TI(TT-TI)
  • step: the attack step
  • file_prefix: additional names for the output file
  • momentum: TT-MI
  • kernlen: 2 * (Shift Length) + 1
  • move_type: shifting strategies
  • kernel_mode: weight matrix generation strategies

Attack Success rate

python reference_kinetics.py/reference_ucf101.py --gpu 0 --adv_path your_adv_path
  • adv_path: name of the output file

Citation

If you use our method for attacks in your research, please consider citing

@inproceedings{wei2022boosting,
  title={Boosting the Transferability of Video Adversarial Examples via Temporal Translation},
  author={Wei, Zhipeng and Chen, Jingjing and Wu, Zuxuan and Jiang, Yu-Gang},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  volume={36},
  number={3},
  pages={2659--2667},
  year={2022}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages