Skip to content

Python wrappers for programs that search for transposable elements

Notifications You must be signed in to change notification settings

zhaotao1987/TE-search-tools

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 

Repository files navigation

#README

TE discovery in a genome assembly

Overview

These are a set of wrappers compossing a pipline which finds transposable elements in a genome assembly. The pipline includes the following steps:

  1. MAKE A DENOVO LIB WITH REPEAT-MODELER. Input: genome assembly, Output: a library containing partially classified consensus sequences of de-novo repeat clusters. Program: RepeatModeler and all its many dependencies.

  2. ADD CLASSIFICATIONS FROM THE ONLINE CENSOR TEXT OUTPUT TO THE REPEAT LIB. Input: A) a library containing partially classified consensus sequences of de-novo repeat clusters. B) text file containing the online censor results. Output: a library containing more classified consensus sequences of de-novo repeat clusters (still some unknow classifications)

  3. SEARCH FOR TEs IN THE GENOME ASSEMBLY WITH REPEAT-MASKER USING THE DENOVO LIB. Input: genome assembly. Output: text file with a .out suffix containing classified TE loci with some redundancies. Program: RepeatMasker, which is a dependency of RepeatModeler.

  4. ELIMINATE REDUNDANCIES IN THE REPEAT-MASKER RESULTS. Input: text file with a .out suffix containing classified TE loci with some redundancies, or a directory with several .out files. Output: elem_stored.csv files, one per contig. Also generate other files per contig. Puts them in the same folder as the .out files used as input. Program: One Code To Find Them All.

  5. INDEPENDENT SEARCH FOR LTR ELEMENTS BASED ON SECONDARY STRUCTURE. Input: genome assembly, Output: text file with loci. Program: LTRharvest

  6. INDEPENDENT SEARCH FOR ELEMENTS BASED ON CODING SEQUENCES. Input: genome assembly, Output: text file with loci. Program: TransposonPSI

  7. ELIMINATE REDUNDANCIES AMONG PROGRAMS

    1. Read OneCodeTo... results. Input: Directory containing elem_stored.csv files. Output: Dictionary, Integer: num of elements in Dictionary.

    2. Read LTRharvest results and eliminate redundancies chosing the longer match between the programs. Input: Dictionary, Integer: num of elements in Dictionary. Output: Dictionary, Integer: num of elements in Dictionary.

    3. Read TransposonPSI results and eliminate redundancies chosing the longer match between the programs. Input: Dictionary, Integer: num of elements in Dictionary. Output: Dictionary, Integer: num of elements in Dictionary.

  8. PRINT NON-REDUNDANT OUTPUT FILE. Input: Dictionary. Output: gff3 file.

Cookbook

Run RepeatModeler

RepeatModeler will produce consensus sequeces representing clusters of denovo repeat sequences, partialy classified by RepeatMasker

from TE import *

make_repeatmodeler_database(name='a_database',
                            input_filename='genome_assembly_file')
# use the BuildDatabase keyword to specify the path to your executable
  
run_repeatmodeler('a_database') 
# use the RepeatModeler keyword to specify the path to your executable

The default engine is ncbi and the default lib is eukaryota. RepeatModeler should make a folder in the CWD with the file 'consensi.fa.classified' in it. It wil write alot of temp files so don't run in Dropbox.

Run Censor online and add the classifications to your denovo library (optional)

Copy and paste the results from the webpage into a text file, here named 'Censor_results'.

censor_classifications = parse_online_censor('Censor_results')

print_online_censor(censor_classifications,
                    'censor_classifications_file')

put_censor_classification_in_repeatmodeler_lib('consensi.fa.classified',
                                                censor_classifications,
                                                'consensi.fa.censor')

Run RepeatMasker using the denovo lib

Some contig names are too long to be parsed in RepeatMasker. However it is possible to replace the names with aliases and have the translations in a file using the first function in this section. It is important to remember to use the aliased genome assembly in the other programs as well, so that redundancies can be resolved.

code_sequence_ids('genome_assembly',
                  'names_translations',
                  'coded_genome_assembly',
                  'prefix_for_aliases')

run_repeat_masker('coded_genome_assembly', lib = 'consensi.fa.censor', species=None) 

Aliases: if you give 'Mflo' as a prefix, the contig aliases will be 'Mflo_0', 'Mflo_1' ...
The run_repeat_masker function accepts all the RepeatMasker keywards. RepeatModeler will write temporary files in a new folder in the CWD so do not run in Dropbox. The output files (most importantly the .out files) will be in the same directory as the input genome assembly.

Ged rid of redundancies in the .out file

Two type of rdundancies are possible: 1) within a run, the same locus may have one classification and subsections of it may have other classifications. 2) you may want to make an additional run of RepeatMasker using the eukaryota library instead of the denovo lib. Both types are handled in this stage. You need to put the .out files of all the RepeatMasker runs in one directory and point the function to that directory.

run_OneCodeToFindThemAll('/path/to/RM/.out/files/',
                         'name_of_intermediate_file', 
                         'octfta_output_filename', 
                         'coded_genome_assembly',
                          build_dictionary = 'build_dictionary.pl',
                          octfta = 'one_code_to_find_them_all.pl'
                          )

As before, the default path specified in the build_dictionary keyword is the local path on my machine

Run independent element searches using alternative approaches

LTRharvest will search for LTR secondary structures and TransposonPSI will do a blastx search against TE protein CDDs

run_LTRharvest('coded_genome_asembly', 
               'name_of_intermideate_file', 
               'ltrharvest_output')                          

run_TransposonPSI('coded_genome_asembly',
                  TPSI = 'perl transposonPSI.pl')

The path for TransposonPSI is pointed to by the TPSI keyword.

Make a non-redundant data structure representing the results of all the searches

The data structure is a dictionary with the following structure:

TEs = { 'taken': { 'element0': {'ref': {'record': 'the line from the program's output',
                                        'program': 'the program's name'},
                                'contig': 'the contig's name',
                                'start': integer,
                                'end': integer,
                                'length': integer,
                                'lower_tx_level': 'element',
                                'higher_tx_level': 'class or order or family'
                                },

 
                   'element1': {...},
                   
                   
                   'element2': {...},
                   
                   ...


                  },



        'discarded': {...}

      }

The internal structure repeats itself within the 'discarded' key. The element number is unique across the taken and discarded elements.

\# puting RepeatMasker results as parsed by OneCode... in the data structure
TEs, serial = parse_ocfa_elem_stored('/path/to/RM/.elem_stored.csv'/files/')

\# adding LTRharvest results to the data structure
TEs, serial = integrate_ltrharvest_to_RM_TEs('ltrharvest_output',      
                                             'coded_genome_assembly',  
                                             serial)                      
                                                                       
\# adding TransposonPSI results to the data structure                                                                 
TEs = integrate_TransposonPSI_to_RM_TEs('NameOfInput.TPSI.allHits.chains.bestPerLocus', 
                                        'coded_genome_asembly', 
                                        TEs, 
                                        serial)

Redundencies are resolved by taking the longer match across the programs

Make a gff3 output file

Don't forget to replace the coded contig names with the real ones, based on the content of the file names_translations. You can either preprocess the TEs dictionary or postprocess the gff file. There is no function to do this.

def write_gff(TEs, 'output.gff3', max_RM_OC_score=False)

One Code concatenates the scores of the TEs it assembles. It does not compute a composite score. By default, the concatenated scores will be written to the gff3 file, although most gff tools don't supprt that.

However, if max_RM_OC_score==True, only the highset score will be retained, in which case the file will be completely complient with the schema.

from Bio.Blast.Applications import NcbitblastnCommandline, NcbipsiblastCommandline
from Bio.Blast import NCBIXML
from Bio import SeqIO
from Bio.Seq import Seq
from Bio.SeqRecord import SeqRecord
from Bio import SeqFeature
from Bio.SeqFeature import SeqFeature, FeatureLocation
from Bio.Alphabet import IUPAC
from Bio.Blast import NCBIXML
import re, os, inspect, subprocess, warnings, sys

ReapeatMasker command line function

def code_sequence_ids(in_fasta_file_name, codes_log_filename, out_fasta_file_name, genome_code):
          from Bio import SeqIO
          infile = SeqIO.parse(in_fasta_file_name, 'fasta')
          codes = open(codes_log_filename, 'wt')
          contig_ids_coded = {}
          coded_contigs = []
          count = 1
          for record in infile:
              contig_ids_coded[genome_code+'_'+str(count)] = record.id
              record.id = genome_code+'_'+str(count)
              record.description = ''
              count += 1
              coded_contigs.append(record)
          for code in contig_ids_coded.keys():
              codes.write(code + '\\t' + contig_ids_coded[code] + '\\n')
          SeqIO.write(coded_contigs, out_fasta_file_name, 'fasta')
          codes.close()
          return contig_ids_coded

def run_repeat_masker(query, RepeatMasker = '/home/amir/homeWork/RM_package/RepeatMasker/RepeatMasker', engine=False, parallel=2,
             slow=False, quick=False, rush=False, nolow=False, noint=False, norna=True, alu=False, div=False,
             lib=False, cutoff=255, species='eukaryota', is_only=False, is_clip=False, no_is=False, gc=False,
             gccalc=False, frag=60000, nocut=False, alignments=True, inv=False, lcambig=True,
             small=False, xsmall=False, poly=False, source=False, html=False, ace=False, gff=False, u=False,
             xm=False, no_id=True, excln=True, noisy=False):
    
    
    
    frame = inspect.currentframe()
    args, _, _, values = inspect.getargvalues(frame)
    del values['frame']
                    
    # compose the command line 
    
    args_wo_values = ['slow','quick','rush','nolow','noint','norna','alu','is_only','is_clip','no_is'
                      'gccalc','nocut','nocut','alignments','inv','lcambig','small','xsmall','poly',
                      'source','html','ace','gff','u','xm','no_id','excln','noisy']
    
    cline = RepeatMasker + ' '
    for arg in values.keys():
        if not arg in ['RepeatMasker','query']:
            if not arg in args_wo_values and not values[arg] == False:
                cline = cline + '-' + arg + ' ' + str(values[arg]) + ' '
            elif values[arg] == True:
                cline = cline + '-' + arg + ' '

    cline = cline + query
    
    # execute the command
    print cline
    return os.system(cline), query + '.out' 

RepeatModeler functions

def make_repeatmodeler_database(name, input_filename, BuildDatabase='/home/amir/homeWork/RM_package/RepeatModeler/BuildDatabase',
        dir=False, engine='ncbi', batch=False):
    
    frame = inspect.currentframe()
    args, _, _, values = inspect.getargvalues(frame)
    del values['frame']
       
    # compose the command line        
    cline = BuildDatabase + ' '
    for arg in values.keys():
        if not arg in ['BuildDatabase']:
            if not values[arg] == False and not values[arg] == True and not arg == 'input_filename':
                cline = cline + '-' + arg + ' ' + str(values[arg]) + ' '
    cline = cline + input_filename
    
    # execute the command
    print cline
    return os.system(cline)

def run_repeatmodeler(database, RepeatModeler='perl /home/amir/homeWork/RM_package/RepeatModeler/RepeatModeler', engine='ncbi',
                     species='eukaryota'):
    frame = inspect.currentframe()
    args, _, _, values = inspect.getargvalues(frame)
    del values['frame']
    
    cline = (RepeatModeler + ' -engine ' + engine + ' -database ' + database +
             ' > ' + database + '.out')
    print cline
    return os.system(cline)

def find_result_dirs_per_genome_code():
    
    """CWD should be a direcrtory containing a set of subdirs with
    RepeatModeler results. This returns a dict with the genome codes
    as keys and the dir name as values"""
    
    RM_results_subdirectories = {}
    for sub in os.walk('.').next()[1]:
        if sub[0:2] == 'RM':
            folder_name = sub
            Genome_code = open('./'+sub+'/round-1/sampleDB-1.fa','r').readlines()[0].split()[1].split('-')[0]
            RM_results_subdirectories[Genome_code]=folder_name
    return RM_results_subdirectories
#print find_results_dirs_per_genome_code()

# {'Gros': 'RM_6449.WedMay210843002014_Gros'}

#Parse online CENSOR results

def parse_online_censor(filename, pident_cutoff, score_cutoff):
    censor_classifications = {}
    keep_parsing = True
    lines = open(filename,'r').readlines()
    for line in lines:
        if "Masked Sequence" in line:
            keep_parsing = False
        parse_this_line = True
        NOT = ('[GIRI]', 'Home ', 'Map of Hits', 'SVG', 'Name ')
        for n in NOT:
            if n in line or line[0]=='\t' or line[0]==' ' or line[0]=='\n':
                parse_this_line = False
        if keep_parsing and parse_this_line:
            l = line.rstrip()
            name = l.split('\t')[0][:-1]
            Class = l.split('\t')[6][:-1]
            score = int(l.split('\t')[-1])
            pident = float(l.split('\t')[-3])
            if (name in censor_classifications.keys() and
                score >= score_cutoff and pident >= pident_cutoff):
                if score > censor_classifications[name]['score']:
                    censor_classifications[name]['score'] = score
                    censor_classifications[name]['Class'] = Class
                    censor_classifications[name]['pident'] = pident
            elif score >= score_cutoff and pident >= pident_cutoff:
                censor_classifications[name] = {'score': score,
                                                'Class': Class,
                                                'pident': pident}
    return censor_classifications
            
def print_online_censor(censor_classifications, filename):
    import csv
    with open(filename, 'wb') as csvfile:
        linewriter = csv.writer(csvfile, delimiter='\t',
                                quotechar='|',
                                quoting=csv.QUOTE_MINIMAL) 
        linewriter.writerow(['Name','calss','score'])
        for name in censor_classifications.keys():
            line = [name, censor_classifications[name]['Class'], censor_classifications[name]['score']]
            linewriter.writerow(line)
            
def put_censor_classification_in_repeatmodeler_lib(input_filename, censor_classifications, output_filename):
    from Bio import SeqIO
    RM_lib = SeqIO.parse(input_filename, 'fasta')
    RM_CENCOR_lib = []
    for record in RM_lib:
        if 'Unknown' in record.id and record.id in censor_classifications.keys():
            classification = censor_classifications[record.id]['Class']
            record.id = record.id.split('#')[0]+'#'+classification
            record.description = (' ').join(record.description.split(' ')[1:])
            RM_CENCOR_lib.append(record)
        else:
            RM_CENCOR_lib.append(record)
    SeqIO.write(RM_CENCOR_lib,output_filename,'fasta')

One Code To Find Them All

def run_OneCodeToFindThemAll(pooled_RM_outputs_dir, #The directory containing repeatmasker .out files or a path to a specific .out file
                            ltr_dict_filename, # name of intermediate file
                            output_filename, 
                            genome_assembly,
                            unknown=False,
                            strict=True,
                            build_dictionary = '/home/amir/homeWork/RM_package/OCtFtA/build_dictionary.pl',
                            octfta = '/home/amir/homeWork/RM_package/OCtFtA/one_code_to_find_them_all.pl',
                            ):
    cline = build_dictionary+' --rm '+pooled_RM_outputs_dir+' --unknown > '+ ltr_dict_filename
    os.system(cline)
    
    cline = octfta+' --rm '+pooled_RM_outputs_dir+' --ltr '+ltr_dict_filename+' --fasta '+genome_assembly
    if unknown:
        cline += ' --unknown'
    if strict:
        cline += ' --strict'
    cline +=' > '+output_filename
    os.system(cline)

LTRharvest

def run_LTRharvest(input_filename, index_name, output_name):
    cline = 'gt suffixerator -db '+input_filename+' -indexname '+index_name+' -tis -suf -lcp -des -ssp -sds -dna'
    os.system(cline)
    cline = 'gt ltrharvest -index '+index_name+' -mintsd 5 -maxtsd 100 > '+output_name
    os.system(cline)

TransposonPSI

def run_TransposonPSI(input_filename,
                  TPSI = 'perl /home/amir/homeWork/RM_package/TransposonPSI_08222010/transposonPSI.pl'):
    cline = (TPSI+' '+input_filename+' nuc')
    os.system(cline)

Unite OCTFTA with LTRharvest and TransposonPSI

Parse OCTFTA elem_stored.csv

def parse_ocfa_elem_stored(pooled_RM_outputs_dir):

    # Get all the '.elem_stored.csv' file names
    from glob import glob
    filenames = glob(pooled_RM_outputs_dir + '*.elem_sorted.csv')

    # An empty dict to hold final TE list
    TEs = {'taken': {}, 'discarded': {}}
    serial = 1

    # Get all the elements in the OCTFTA output
    for filename in filenames:
        taken_elements = {}
        discarded_elements = {}
        for line in open(filename, 'r').readlines():
            if line[:3] == '###':
                
                reference = {'program': 'RMOCFA',
                             'record': line}
                contig = line.split('\t')[4]
                start = line.split('\t')[5]
                end = line.split('\t')[6]
                length = line.split('\t')[7]
                element = line.split('\t')[9]
                family = line.split('\t')[10]
                
                max_score = max([int(i) for i in line.split('\t')[0][3:].split('/')])
                
                take = True
                
                # make sure the locus is not covered and if it is check which match is better
                for element in taken_elements:
                    prex_el_line = taken_elements[element]['ref']['record']
                    prex_el_score = max([int(i) for i in prex_el_line.split('\t')[0][3:].split('/')])
                    prex_el_contig = taken_elements[element]['contig']
                    prex_el_start = taken_elements[element]['start']
                    prex_el_end = taken_elements[element]['end']
                    if (contig == prex_el_contig and 
                        (prex_el_start < start < prex_el_end or
                         prex_el_start < end < prex_el_end or
                         start < prex_el_start < end or
                         start < prex_el_end <end)):
                        if max_score > prex_el_score:
                            discarded_elements[element] = taken_elements.pop(element, None)
                        else:
                            take = False
                        
                if take:
                    taken_elements['element' + str(serial)] = {'ref': reference,
                                                              'contig': contig,
                                                              'start': int(start),
                                                              'end': int(end),
                                                              'length': int(length),
                                                              'lower_tx_level': element,
                                                              'higher_tx_level': family}

                    
                serial += 1
        TEs['taken'].update(taken_elements)
        TEs['discarded'].update(discarded_elements)
    return TEs, serial

Get loci from the LTRharvest output only if they are longer than ones found with repeatmasker for the same locus

def integrate_ltrharvest_to_RM_TEs(LTRharvest_output_filename,genome_path, TEs_from_RMOCFA, serial, sim_cutoff=85, l_cutoff=4000 ):
    import re
    from Bio import SeqIO
    
    lines = open(LTRharvest_output_filename, 'r').readlines()
    
    contig_names = [record.id for record in SeqIO.parse(genome_path, 'fasta')]
    
    line_count = 0
    for line in lines:
        if not line[0] == '#' and len(line) > 1:
            # correct contig name:
            ## get the true contig name based on the sequence number in the LTRarvest output:
            from Bio import SeqIO
            corrected_sequence_name = None
            line_serial = int(line.rstrip().split('  ')[-1])
            
            try: 
                corrected_sequence_name = contig_names[line_serial]
            except:
                raise RuntimeError('Could not find contig for seq number ' + str(line_serial))
                
            ## Parse the LTRharvest results line
            reference = {'program': 'LTRharvest',
                         'record': line}
            contig = corrected_sequence_name
            start = int(line.split('  ')[0])
            end = int(line.split('  ')[1])
            length = int(line.split('  ')[2])
            lower_tx_level = '?'
            higher_tx_level = 'LTR'
            sim = float(line.split('  ')[-2])
            l = int(line.split('  ')[2])
            TE = {'ref': reference,
                  'contig': contig,
                  'start': int(start),
                  'end': int(end),
                  'length': int(length),
                  'lower_tx_level': lower_tx_level,
                  'higher_tx_level': higher_tx_level}
            
            ## Check if the locus is already covered by the repeatmasker results
            ## If it is, check if the ltr hit is longer (then place in taken, and move the rm hit to discarded)
            ## or shorter (then place the ltr hit in discraded)
            placed = False
            for key in TEs_from_RMOCFA['taken'].keys():
                if ( TEs_from_RMOCFA['taken'][key]['contig'] == contig and 
                    (TEs_from_RMOCFA['taken'][key]['start']< start <TEs_from_RMOCFA['taken'][key]['end'] or 
                    TEs_from_RMOCFA['taken'][key]['start']< end <TEs_from_RMOCFA['taken'][key]['end'] or
                    start < TEs_from_RMOCFA['taken'][key]['start'] < end or
                    start < TEs_from_RMOCFA['taken'][key]['end']  < end)):
                    ### since it is, keep the longer output (either repeatmasker or LTRharvest)
                    ### use the repeatmasker classification either way
                    ### put the looser in the 'discarded' dictionary
                    if TEs_from_RMOCFA['taken'][key]['length'] < length and sim >= sim_cutoff and l >= l_cutoff:
                        #TE['element'] = TEs_from_RMOCFA['taken'][key]['lower_tx_level']
                        #TE['family'] = TEs_from_RMOCFA['taken'][key]['higher_tx_level']
                        TEs_from_RMOCFA['discarded'][key] = TEs_from_RMOCFA['taken'].pop(key, None)
                        TEs_from_RMOCFA['taken']['element'+str(serial)] = TE
                    else:
                        TEs_from_RMOCFA['discarded']['element'+str(serial)] = TE
                    placed = True
                    break
            if not placed and sim >= sim_cutoff  and l >= l_cutoff:
                ### Since it is not, add the LTRharvest TE to the 'taken' dict:
                TEs_from_RMOCFA['taken']['element'+str(serial)] = TE
                serial +=1
            else:
                TEs_from_RMOCFA['discarded']['element'+str(serial)] = TE
            serial +=1    
            #if line_count%100 == 0:
            #    print str(line_count)
            line_count += 1
    return TEs_from_RMOCFA, serial

Get loci from the TransposonPSI output only if they are longer than ones found with repeatmasker for the same locus

def integrate_TransposonPSI_to_RM_TEs(TransposonPSI_output_filename,genome_path, TEs_from_RMOCFA, serial, score_cutoff=100):
    import re
    
    lines = open(TransposonPSI_output_filename, 'r').readlines()
    
    line_count = 0
    for line in lines:
        if line[0] == '#':
                
            ## Parse the TransposonPSI results line
            reference = {'program': 'TransposonPSI',
                         'record': line}
            contig = line.split('\t')[3]
            start = int(line.split('\t')[4].split('-')[0])
            end = int(line.split('\t')[4].split('-')[1])
            length = end-start+1
            lower_tx_level = '?'
            higher_tx_level = line.split('\t')[1]
            score = line.split('\t')[-1].rstrip()
            TE = {'ref': reference,
                  'contig': contig,
                  'start': int(start),
                  'end': int(end),
                  'length': int(length),
                  'lower_tx_level': lower_tx_level,
                  'higher_tx_level': higher_tx_level}
            
            ## Check if the locus is already covered by previous results
            placed = False
            for key in TEs_from_RMOCFA['taken'].keys():
                if ( TEs_from_RMOCFA['taken'][key]['contig'] == contig and 
                    (TEs_from_RMOCFA['taken'][key]['start']< start <TEs_from_RMOCFA['taken'][key]['end'] or 
                    TEs_from_RMOCFA['taken'][key]['start']< end <TEs_from_RMOCFA['taken'][key]['end']or
                    start < TEs_from_RMOCFA['taken'][key]['start'] < end or
                    start < TEs_from_RMOCFA['taken'][key]['end']  < end)):
                    ### since it is, keep the longer output 
                    ### put the looser in the 'discarded' dictionary
                    if TEs_from_RMOCFA['taken'][key]['length'] < length and score >= score_cutoff:
                        TEs_from_RMOCFA['discarded'][key] = TEs_from_RMOCFA['taken'].pop(key, None)
                        TEs_from_RMOCFA['taken']['element'+str(serial)] = TE
                    else:
                        TEs_from_RMOCFA['discarded']['element'+str(serial)] = TE
                    placed = True
                    break
            if not placed and score >= score_cutoff:
                ### Since it is not, add the TransposonPSI TE to the 'taken' dict:
                TEs_from_RMOCFA['taken']['element'+str(serial)] = TE
            else:
                TEs_from_RMOCFA['discarded']['element'+str(serial)] = TE
            serial +=1
            #if line_count%100 == 0:
            #    print str(line_count)
            line_count += 1
    return TEs_from_RMOCFA

TE dict to gff3

def write_gff(TEs, gff_filename, max_RM_OC_score=False): 

    gff_pattern = "%s\t%s\ttransposable_element\t%i\t%i\t%s\t%s\t.\tID=%s;Name=%s;Note=%s\n" 
    #%(contig, program, start, end, score, strand, ID, name, note)

    
    # Make the regions bit for the top of the file
    regions = {}

    for e in TEs['taken']:
        record = TEs['taken'][e]
        contig = record['contig']
        start, end = record['start'], record['end']
        if start > end:
            start, end = end, start
            
        # Each contig has to be included once and encopass all the TEs
        # that are on it
        if not contig in regions:
            regions[contig] = [start,end]
        else:
            if start < regions[contig][0]:
                regions[contig][0] = start
            if end > regions[contig][1]:
                regions[contig][1] = end

    regions = sorted(regions.items(), key = lambda i: i[0])
    regions = ["##sequence-region   %s %i %i\n"%(j[0],j[1][0],j[1][1]) for j in regions]

    
    # Write the file
    with open(gff_filename,'wt') as gff:
        # Write the regions
        gff.write('##gff-version 3\n')
        for l in regions:
            gff.write(l)
        # Write the matches
        for e in TEs['taken']:
            record = TEs['taken'][e]
            contig = record['contig']
            program = record['ref']['program']
            if program == 'RMOCFA':
                program = 'Repeatmasker-OneCode'
            start, end = record['start'], record['end']
            # make sure start is the smaller coordinate
            if start > end:
                start, end = end, start
            ID = e
            name = record['higher_tx_level']
            note = record['lower_tx_level']
            if 'element' in note:
                note = '?'
            score, strand = '.', '.'
            ref = record['ref']['record'].rstrip()
            if program == 'TransposonPSI':
                score, strand = ref.split('\t')[-1], ref.split('\t')[-2]
            elif program == 'Repeatmasker-OneCode':
                score, strand = ref.split('\t')[0], ref.split('\t')[8]
                if max_RM_OC_score:
                    score = max([int(s) for s in score.split('/')])
            strand = strand.replace('C','-')
            score = score.replace('#','')
            gff.write(gff_pattern%(contig, program, start, end, score, strand, ID, name, note))

Utils for multiple genome assembly analyses

def genome_codes_list(genomes_directory, mode='++', code_file = 'genome_assembly_files.csv'):
    """ return a list of codes 
    genomes_directory: path to the directory containing the genome assemblies
    code file: contains code and genome assembly file names (wo path).
    It is formated as follows:
    
    <code><space><assembly filename><space><mode><newline>
    
    mode is any symbol grouping the filenames. It is nested. 
    examples:
    
    mode = '$'
    
    code1 filename1 $ -> will be read
    code2 filename2 $$ -> will be read
    code3 filename3 $+ -> will be read
    code4 filename4 + -> will not be read
    
    mode = '$$'
    
    with the same example as above, only code2 will be read.
    
    """
    codes = []
    for line in open(genomes_directory+code_file,'r').readlines():
        if mode in line:
            codes.append(line.split()[0])
    return codes

def genomes_dict(genomes_directory, mode='++', code_file = 'genome_assembly_files.csv'):
    """ returns a dict, codes as keys, file names as values """
    genomes = {}
    for line in open(genomes_directory+code_file,'r').readlines():
        if mode in line:
            genomes[line.split()[0]] = line.split()[1]
    return genomes

def assembly_of(code, genomes_directory, generator=True, code_file = 'genome_assembly_files.csv', mode='++'):
    """ returns a list of SeqRecords 
    which are the contig of the assembly.
    """
    from Bio import SeqIO
    records = SeqIO.parse(genomes_directory+genomes_dict(genomes_directory=genomes_directory, code_file=code_file, mode='++')[code],'fasta')
    if not generator:
        records = list(records)
    return records


def codes_with_no_censor_lib(folders):
    """ return codes with no denovo lib """
    import os
    missing_censor_results = []
    for path in codes_with_folders(folders=folders):
        pass
        if not os.path.isfile(path+'consensi.fa.censor'):
            missing_censor_results.append(path.split('/')[-2])
    return missing_censor_results

def codes_with_censor_lib(folders):
    """ return codes that have a censor denovo lib """
    import os
    missing_censor_results = []
    for path in codes_with_folders(folders=folders):
        pass
        if os.path.isfile(path+'consensi.fa.censor'):
            missing_censor_results.append(path.split('/')[-2])
    return missing_censor_results

def make_non_redundant_lib(redundant_lib, non_redundant_lib,
                           cluster_identity=0.9, uclust = 'uclust'):
    """ makes a non redundant lib """
    
    import os
    cline = uclust+' --sort '+redundant_lib+' --output seqs_sorted.fasta'
    os.system(cline)
    cline = uclust+' --input seqs_sorted.fasta --uc results.uc --id '+str(cluster_identity)
    os.system(cline)
    cline = uclust+' --uc2fasta results.uc --input seqs_sorted.fasta  --types S --output results.fasta'
    os.system(cline)
    from Bio import SeqIO
    from Bio.Seq import Seq
    records = list(SeqIO.parse('results.fasta', 'fasta'))
    for r in records:
        r.id = r.id.split('|')[2]
        r.description = ' '.join(r.description.split()[1:])
        alpha = r.seq.alphabet
        r.seq = Seq(str(r.seq).replace('-',''), alphabet=alpha)
        
    SeqIO.write(records,non_redundant_lib,'fasta')
    return non_redundant_lib

About

Python wrappers for programs that search for transposable elements

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 55.8%
  • Python 44.2%