This is the code for Heterophilous distribution propagation for Graph Neural Networks (HDP).
- python >= 3.6.13
- numpy >= 1.19.2
- pytorch >= 1.10.2
- dgl-cuda >= 0.8.1
- torch-geometric >= 2.0.3
python main.py --dataset={dataset}
If you find this repo useful for your research, please consider citing our paper:
@article{ZHENG2025107014,
author = {Zhuonan Zheng and Sheng Zhou and Hongjia Xu and Ming Gu and Yilun Xu and Ao Li and Yuhong Li and Jingjun Gu and Jiajun Bu},
doi = {https://doi.org/10.1016/j.neunet.2024.107014},
issn = {0893-6080},
journal = {Neural Networks},
keywords = {Graph Neural Networks, Graph representation learning, Graph heterophily},
pages = {107014},
title = {Heterophilous distribution propagation for Graph Neural Networks},
url = {https://www.sciencedirect.com/science/article/pii/S0893608024009432},
volume = {184},
year = {2025},
Bdsk-Url-1 = {https://www.sciencedirect.com/science/article/pii/S0893608024009432},
Bdsk-Url-2 = {https://doi.org/10.1016/j.neunet.2024.107014}
}