Skip to content

Commit

Permalink
nn_linear and nn_maxpool and nn_non_activation
Browse files Browse the repository at this point in the history
  • Loading branch information
yzh92 committed May 22, 2024
1 parent dbc7e85 commit 51e175e
Show file tree
Hide file tree
Showing 5 changed files with 140 additions and 1 deletion.
3 changes: 2 additions & 1 deletion .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -3,4 +3,5 @@
/datasets_tranforms/CIFAR10/
/datasets_transforms/CIFAR10/
/datasets_tranforms/p10/
/logs/
/logs/
/data/
31 changes: 31 additions & 0 deletions nn_linear.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
# -*- coding: utf-8 -*-
# @Time : 2024/5/22 15:10
# @Author : yzh
# @File : nn_linear.py
# @Software: PyCharm
import torch
import torchvision
from torch import nn
from torch.nn import Linear
from torch.utils.data import DataLoader

dataset = torchvision.datasets.CIFAR10('./data',train=False,transform=torchvision.transforms.ToTensor(),
download=True)

dataloader = DataLoader(dataset,batch_size=64,drop_last=True)

class Model(nn.Module):
def __init__(self):
super().__init__()
self.linear = Linear()

def forward(self,input):
output = self.linear(input)
return output

model = Model()

for data in dataloader:
imgs,targets = data
imgs = torch.flatten(imgs)
print(imgs.shape)
26 changes: 26 additions & 0 deletions nn_maxpool.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
# -*- coding: utf-8 -*-
# @Time : 2024/5/22 14:05
# @Author : yzh
# @File : nn_maxpool.py
# @Software: PyCharm
import torch
from torch import nn
from torch.nn import MaxPool2d

input = torch.tensor([[1,2,0,3,1],
[0,1,2,3,1],
[1,2,1,0,0],
[5,2,3,1,1],
[2,1,0,1,1]],dtype=torch.float)
input = torch.reshape(input,(-1,1,5,5))
class Model(nn.Module):
def __init__(self):
super().__init__()
self.maxpool1 = MaxPool2d(kernel_size=3,ceil_mode=True)

def forward(self,input):
output = self.maxpool1(input)
return output
model = Model()
output = model(input)
print(output)
37 changes: 37 additions & 0 deletions nn_maxpool_dataloader.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
# -*- coding: utf-8 -*-
# @Time : 2024/5/22 14:15
# @Author : yzh
# @File : nn_maxpool_dataloader.py
# @Software: PyCharm
import torch
import torchvision
from torch import nn
from torch.nn import MaxPool2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10(',/datasets_tranforms/CIFAR10', train=True,
transform=torchvision.transforms.ToTensor(), download=True)

dataloader = DataLoader(dataset,batch_size=64)

class Model(nn.Module):
def __init__(self):
super().__init__()
self.maxpool = MaxPool2d(kernel_size=3)

def forward(self,input):
output = self.maxpool(input)
return output

model = Model()

writer = SummaryWriter('logs')
step = 0
for data in dataloader:
imgs,targets = data
writer.add_images('input2',imgs,step)
output = model(imgs)
writer.add_images('output2',output,step)
step = step+1
writer.close()
44 changes: 44 additions & 0 deletions nn_relu.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
# -*- coding: utf-8 -*-
# @Time : 2024/5/22 14:37
# @Author : yzh
# @File : nn_relu.py
# @Software: PyCharm
import torch
import torchvision
from torch import nn
from torch.nn import ReLU, Sigmoid
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

input = torch.tensor([[-1,0.5],
[3,-2]])
input = torch.reshape(input,(-1,1,2,2))

dataset = torchvision.datasets.CIFAR10('./datasets_tranforms/CIFAR10',train=False,
transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset,batch_size=64)

class Model(nn.Module):
def __init__(self):
super().__init__()
# self.relu = ReLU()
# exchage sigmoid
self.sigmoid = Sigmoid()
def forward(self,input):
# output = self.relu(input)
output = self.sigmoid(input)
return output

model = Model()
# output = model(input)
#
# print(output)
writer = SummaryWriter('logs')
step = 0
for data in dataloader:
imgs,targets = data
writer.add_images('sigmoid_input',imgs,step)
output = model(imgs)
writer.add_images('sigmoid_output',output,step)
step = step+1
writer.close()

0 comments on commit 51e175e

Please sign in to comment.