-
Notifications
You must be signed in to change notification settings - Fork 15
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
97 changed files
with
1,136 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,132 @@ | ||
import numpy as np | ||
import os | ||
import h5py | ||
#import gdal | ||
import scipy.io as scio | ||
|
||
|
||
class DataSet(object): | ||
def __init__(self,pan_size,ms_size,source_path,data_save_path,batch_size, stride, category='train'): | ||
self.pan_size=pan_size | ||
self.ms_size=ms_size | ||
self.batch_size=batch_size | ||
if not os.path.exists(data_save_path): | ||
self.make_data(source_path,data_save_path,stride) | ||
self.pan,self.ms=self.read_data(data_save_path,category) | ||
self.data_generator=self.generator() | ||
|
||
def generator(self): | ||
num_data=self.pan.shape[0] | ||
while True: | ||
batch_pan=np.zeros((self.batch_size,self.pan_size,self.pan_size,1)) | ||
batch_ms=np.zeros((self.batch_size,self.ms_size,self.ms_size,4)) | ||
for i in range(self.batch_size): | ||
random_index=np.random.randint(0,num_data) | ||
batch_pan[i]=self.pan[random_index] | ||
batch_ms[i]=self.ms[random_index] | ||
yield batch_pan, batch_ms | ||
|
||
def read_data(self,path,category): | ||
f=h5py.File(path, 'r') | ||
if category == 'train': | ||
pan=np.array(f['pan_train']) | ||
ms=np.array(f['ms_train']) | ||
else: | ||
pan=np.array(f['pan_valid']) | ||
ms=np.array(f['ms_valid']) | ||
return pan,ms | ||
|
||
def make_data(self, source_path, data_save_path, stride): | ||
# source_ms_path=os.path.join(source_path, 'MS','1.TIF') | ||
# source_pan_path=os.path.join(source_path, 'Pan','1.TIF') | ||
source_ms_path=os.path.join(source_path, 'MS','1.mat') | ||
source_pan_path=os.path.join(source_path, 'Pan','1.mat') | ||
all_pan=self.crop_to_patch(source_pan_path, stride, name='pan') | ||
all_ms=self.crop_to_patch(source_ms_path, stride, name='ms') | ||
print('The number of ms patch is: ' + str(len(all_ms))) | ||
print('The number of pan patch is: ' + str(len(all_pan))) | ||
pan_train, pan_valid, ms_train, ms_valid=self.split_data(all_pan,all_ms) | ||
print('The number of pan_train patch is: ' + str(len(pan_train))) | ||
print('The number of pan_valid patch is: ' + str(len(pan_valid))) | ||
print('The number of ms_train patch is: ' + str(len(ms_train))) | ||
print('The number of ms_valid patch is: ' + str(len(ms_valid))) | ||
pan_train=np.array(pan_train) | ||
pan_valid=np.array(pan_valid) | ||
ms_train=np.array(ms_train) | ||
ms_valid=np.array(ms_valid) | ||
f=h5py.File(data_save_path,'w') | ||
f.create_dataset('pan_train', data=pan_train) | ||
f.create_dataset('pan_valid', data=pan_valid) | ||
f.create_dataset('ms_train', data=ms_train) | ||
f.create_dataset('ms_valid', data=ms_valid) | ||
|
||
def crop_to_patch(self, img_path, stride, name): | ||
#img=(cv2.imread(img_path,-1)-127.5)/127.5 | ||
img=self.read_img2(img_path) | ||
h=img.shape[0] | ||
w=img.shape[1] | ||
print(h) | ||
print(w) | ||
all_img=[] | ||
if name == 'ms': | ||
for i in range(0, h-self.ms_size, stride): | ||
for j in range(0, w-self.ms_size, stride): | ||
img_patch=img[i:i+self.ms_size, j:j+self.ms_size,:] | ||
all_img.append(img_patch) | ||
if i + self.ms_size >= h: | ||
img_patch=img[h-self.ms_size:, j:j+self.ms_size,:] | ||
all_img.append(img_patch) | ||
img_patch=img[i:i+self.ms_size, w-self.ms_size:,:] | ||
all_img.append(img_patch) | ||
else: | ||
for i in range(0, h-self.pan_size, stride*4): | ||
for j in range(0, w-self.pan_size, stride*4): | ||
img_patch=img[i:i+self.pan_size, j:j+self.pan_size].reshape(self.pan_size,self.pan_size,1) | ||
all_img.append(img_patch) | ||
if i + self.pan_size >= h: | ||
img_patch=img[h-self.pan_size:, j:j+self.pan_size].reshape(self.pan_size,self.pan_size,1) | ||
all_img.append(img_patch) | ||
img_patch=img[i:i+self.pan_size, w-self.pan_size:].reshape(self.pan_size,self.pan_size,1) | ||
all_img.append(img_patch) | ||
return all_img | ||
|
||
def split_data(self,all_pan,all_ms): | ||
''' all_pan和all_ms均为list''' | ||
pan_train=[] | ||
pan_valid=[] | ||
ms_train=[] | ||
ms_valid=[] | ||
for i in range(len(all_pan)): | ||
rand=np.random.randint(0,100) | ||
if rand <=10: | ||
pan_valid.append(all_pan[i]) | ||
ms_valid.append(all_ms[i]) | ||
else: | ||
ms_train.append(all_ms[i]) | ||
pan_train.append(all_pan[i]) | ||
return pan_train, pan_valid, ms_train, ms_valid | ||
|
||
def read_img(self,path,name): | ||
data=gdal.Open(path) | ||
w=data.RasterXSize | ||
h=data.RasterYSize | ||
img=data.ReadAsArray(0,0,w,h) | ||
if name == 'ms': | ||
img=np.transpose(img,(1,2,0)) | ||
img=(img-1023.5)/1023.5 | ||
return img | ||
|
||
def read_img2(self, path): | ||
img=scio.loadmat(path)['I'] | ||
img=(img-127.5)/127.5 | ||
|
||
return img | ||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
Oops, something went wrong.