Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implementing command-line usage #30

Merged
merged 8 commits into from
Aug 11, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
135 changes: 119 additions & 16 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -9,27 +9,16 @@ CVPR, ICCV
### Natural Language Processing
ACL, NAACL, EMNLP, CoNLL, COLING, IJCNLP, EACL, LREC, CL, SEMEVAL, TACL, ALTA, HLT, JEP-TALN-RECITAL, MUC, PACLIC, RANLP, ROCLING-IJCLCLP, TINLAP, TIPSTER

# Usage
# Usage(1): via command-line
### Overview
Run `medical_ai.py` on the shell:
```
python3 medical_ai.py
```

Specify conference name and year:
```
Input conference name and year (e.g. 'naacl 2019') :
```

Clipboard options:
```
Copy result on clipboard? (True/False) :
python3 medical_ai.py <CONFERENCE> <YEAR>
```

e.g. For `'nips 2018'`, you get 11 medical-like conference papers:
```
python3 medical_ai.py
Input conference name and year (e.g. 'naacl 2019') : nips 2018
Copy result on clipboard? (True/False) : False
python3 medical_ai.py nips 2018
Connecting...
Searching... 11 matches / 1011
===================================
Expand Down Expand Up @@ -66,6 +55,120 @@ http://papers.nips.cc/paper/8125-bayesian-multi-domain-learning-for-cancer-subty
Life-Long Disentangled Representation Learning with Cross-Domain Latent Homologies.
http://papers.nips.cc/paper/8193-life-long-disentangled-representation-learning-with-cross-domain-latent-homologies
===================================
Medical-like AI papers: 11 / 1011
Medical-like AI papers in NIPS 2018: 11 / 1011
===================================
```

### Options


Use `--html` option to display result as HTML link <a> tags:

```
python3 medical_ai.py nips 2018 --html
Connecting...
Searching... 11 match / 1011
===================================
<a href="http://papers.nips.cc/paper/7426-hybrid-retrieval-generation-reinforced-agent-for-medical-image-report-generation" target="_blank" alt="Hybrid Retrieval-Generation Reinforced Agent for Medical Image Report Generation.">Hybrid Retrieval-Generation Reinforced Agent for Medical Image Report Generation.</a><br/>
<a href="http://papers.nips.cc/paper/7529-representation-learning-for-treatment-effect-estimation-from-observational-data" target="_blank" alt="Representation Learning for Treatment Effect Estimation from Observational Data.">Representation Learning for Treatment Effect Estimation from Observational Data.</a><br/>
<a href="http://papers.nips.cc/paper/7702-lifelong-inverse-reinforcement-learning" target="_blank" alt="Lifelong Inverse Reinforcement Learning.">Lifelong Inverse Reinforcement Learning.</a><br/>
<a href="http://papers.nips.cc/paper/7706-mime-multilevel-medical-embedding-of-electronic-health-records-for-predictive-healthcare" target="_blank" alt="MiME: Multilevel Medical Embedding of Electronic Health Records for Predictive Healthcare.">MiME: Multilevel Medical Embedding of Electronic Health Records for Predictive Healthcare.</a><br/>
<a href="http://papers.nips.cc/paper/7817-mental-sampling-in-multimodal-representations" target="_blank" alt="Mental Sampling in Multimodal Representations.">Mental Sampling in Multimodal Representations.</a><br/>
<a href="http://papers.nips.cc/paper/7962-refuel-exploring-sparse-features-in-deep-reinforcement-learning-for-fast-disease-diagnosis" target="_blank" alt="REFUEL: Exploring Sparse Features in Deep Reinforcement Learning for Fast Disease Diagnosis.">REFUEL: Exploring Sparse Features in Deep Reinforcement Learning for Fast Disease Diagnosis.</a><br/>
<a href="http://papers.nips.cc/paper/7977-forecasting-treatment-responses-over-time-using-recurrent-marginal-structural-networks" target="_blank" alt="Forecasting Treatment Responses Over Time Using Recurrent Marginal Structural Networks.">Forecasting Treatment Responses Over Time Using Recurrent Marginal Structural Networks.</a><br/>
<a href="http://papers.nips.cc/paper/8035-does-mitigating-mls-impact-disparity-require-treatment-disparity" target="_blank" alt="Does mitigating ML's impact disparity require treatment disparity?">Does mitigating ML's impact disparity require treatment disparity?</a><br/>
<a href="http://papers.nips.cc/paper/8086-houdini-lifelong-learning-as-program-synthesis" target="_blank" alt="HOUDINI: Lifelong Learning as Program Synthesis.">HOUDINI: Lifelong Learning as Program Synthesis.</a><br/>
<a href="http://papers.nips.cc/paper/8125-bayesian-multi-domain-learning-for-cancer-subtype-discovery-from-next-generation-sequencing-count-data" target="_blank" alt="Bayesian multi-domain learning for cancer subtype discovery from next-generation sequencing count data.">Bayesian multi-domain learning for cancer subtype discovery from next-generation sequencing count data.</a><br/>
<a href="http://papers.nips.cc/paper/8193-life-long-disentangled-representation-learning-with-cross-domain-latent-homologies" target="_blank" alt="Life-Long Disentangled Representation Learning with Cross-Domain Latent Homologies.">Life-Long Disentangled Representation Learning with Cross-Domain Latent Homologies.</a>
===================================
Medical-like AI papers in NIPS 2018: 11 / 1011
===================================
```

Use `--markdown` option to display result as markdown links:

```
python3 medical_ai.py nips 2018 --markdown
Connecting...
Searching... 11 match / 1011
===================================
[Hybrid Retrieval-Generation Reinforced Agent for Medical Image Report Generation.](http://papers.nips.cc/paper/7426-hybrid-retrieval-generation-reinforced-agent-for-medical-image-report-generation)
[Representation Learning for Treatment Effect Estimation from Observational Data.](http://papers.nips.cc/paper/7529-representation-learning-for-treatment-effect-estimation-from-observational-data)
[Lifelong Inverse Reinforcement Learning.](http://papers.nips.cc/paper/7702-lifelong-inverse-reinforcement-learning)
[MiME: Multilevel Medical Embedding of Electronic Health Records for Predictive Healthcare.](http://papers.nips.cc/paper/7706-mime-multilevel-medical-embedding-of-electronic-health-records-for-predictive-healthcare)
[Mental Sampling in Multimodal Representations.](http://papers.nips.cc/paper/7817-mental-sampling-in-multimodal-representations)
[REFUEL: Exploring Sparse Features in Deep Reinforcement Learning for Fast Disease Diagnosis.](http://papers.nips.cc/paper/7962-refuel-exploring-sparse-features-in-deep-reinforcement-learning-for-fast-disease-diagnosis)
[Forecasting Treatment Responses Over Time Using Recurrent Marginal Structural Networks.](http://papers.nips.cc/paper/7977-forecasting-treatment-responses-over-time-using-recurrent-marginal-structural-networks)
[Does mitigating ML's impact disparity require treatment disparity?](http://papers.nips.cc/paper/8035-does-mitigating-mls-impact-disparity-require-treatment-disparity)
[HOUDINI: Lifelong Learning as Program Synthesis.](http://papers.nips.cc/paper/8086-houdini-lifelong-learning-as-program-synthesis)
[Bayesian multi-domain learning for cancer subtype discovery from next-generation sequencing count data.](http://papers.nips.cc/paper/8125-bayesian-multi-domain-learning-for-cancer-subtype-discovery-from-next-generation-sequencing-count-data)
[Life-Long Disentangled Representation Learning with Cross-Domain Latent Homologies.](http://papers.nips.cc/paper/8193-life-long-disentangled-representation-learning-with-cross-domain-latent-homologies)
===================================
Medical-like AI papers in NIPS 2018: 11 / 1011
===================================
```

Use `--copy` option to copy result onto clipboard:

```
python3 medical_ai.py nips 2018 --markdown --copy
Connecting...
Searching... 11 match / 1011
===================================
[Hybrid Retrieval-Generation Reinforced Agent for Medical Image Report Generation.](http://papers.nips.cc/paper/7426-hybrid-retrieval-generation-reinforced-agent-for-medical-image-report-generation)
[Representation Learning for Treatment Effect Estimation from Observational Data.](http://papers.nips.cc/paper/7529-representation-learning-for-treatment-effect-estimation-from-observational-data)
[Lifelong Inverse Reinforcement Learning.](http://papers.nips.cc/paper/7702-lifelong-inverse-reinforcement-learning)
[MiME: Multilevel Medical Embedding of Electronic Health Records for Predictive Healthcare.](http://papers.nips.cc/paper/7706-mime-multilevel-medical-embedding-of-electronic-health-records-for-predictive-healthcare)
[Mental Sampling in Multimodal Representations.](http://papers.nips.cc/paper/7817-mental-sampling-in-multimodal-representations)
[REFUEL: Exploring Sparse Features in Deep Reinforcement Learning for Fast Disease Diagnosis.](http://papers.nips.cc/paper/7962-refuel-exploring-sparse-features-in-deep-reinforcement-learning-for-fast-disease-diagnosis)
[Forecasting Treatment Responses Over Time Using Recurrent Marginal Structural Networks.](http://papers.nips.cc/paper/7977-forecasting-treatment-responses-over-time-using-recurrent-marginal-structural-networks)
[Does mitigating ML's impact disparity require treatment disparity?](http://papers.nips.cc/paper/8035-does-mitigating-mls-impact-disparity-require-treatment-disparity)
[HOUDINI: Lifelong Learning as Program Synthesis.](http://papers.nips.cc/paper/8086-houdini-lifelong-learning-as-program-synthesis)
[Bayesian multi-domain learning for cancer subtype discovery from next-generation sequencing count data.](http://papers.nips.cc/paper/8125-bayesian-multi-domain-learning-for-cancer-subtype-discovery-from-next-generation-sequencing-count-data)
[Life-Long Disentangled Representation Learning with Cross-Domain Latent Homologies.](http://papers.nips.cc/paper/8193-life-long-disentangled-representation-learning-with-cross-domain-latent-homologies)
===================================
Medical-like AI papers in NIPS 2018: 11 / 1011
===================================
* * * Copied this result to clipboard * * *
```


To browse all available options, input `python3 medical_ai.py -h` or `python3 medical_ai.py --help`:


```
usage: medical_ai.py [-h] [-q] [--copy] [-m | --html]
[--title-only | --url-only]
conference year

++++++++++++++++++++++++++++++++++++++++++++++++++
Pickup medical AI paper titles and URLs from specified conference and year.
会議名と年数を指定すると, 医療に関連するAI論文のみを探し出してタイトルとURLを列挙します.

To get from ACL 2019, input like this: python3 medical_ai.py acl 2019
例えばACL 2019採択論文から探すには本プログラムを python3 medical medical_ai.py acl 2019 と実行してください.

Conference name is case insensitive.
会議名は大文字でも小文字でも構いません.

To output HTML link tags or markdown links, use options below.
以下に示すオプションを使うと, 結果をHTMLリンクタグやMarkdownリンクとして出力することも可能です.
++++++++++++++++++++++++++++++++++++++++++++++++++

positional arguments:
conference specify one conference (e.g. acl)
year specify one year (e.g. 2019)

optional arguments:
-h, --help show this help message and exit
-q, --quiet be more quiet
--copy copy result to clipboard
-m, --md, --markdown output as markdown links
collaborates with --url-only
ignores --title-only
--html output as HTML <a> tags
collaborates with --url-only
ignores --title-only
--title-only output paper title only
--url-only output paper URL only
```
Loading