Skip to content

Some problems occurred when I used model evaluation #219

@pengweimin

Description

@pengweimin

test_input = torch.from_numpy(X_test)
test_label = torch.from_numpy(y_test)

# create the data loader for the test set
testset = torch.utils.data.TensorDataset(test_input, test_label)
testloader = torch.utils.data.DataLoader(testset, batch_size=opt.batch_size, shuffle=False, num_workers=0)

cnn.eval()

def train_SCU(X_train, y_train):
train_input = torch.from_numpy(X_train)
train_label = torch.from_numpy(y_train)
trainset = torch.utils.data.TensorDataset(train_input, train_label)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=opt.batch_size, shuffle=True, num_workers=0)
cnn = SCU(opt, num_classes).to(device)
cnn.train()
ce_loss = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(cnn.parameters(), lr=opt.lr, weight_decay=opt.w_decay)

for epoch in range(opt.n_epochs):
    flag = 0
    cumulative_accuracy = 0
    for i, data in enumerate(trainloader, 0):
        inputs, labels = data
        inputs, labels = inputs.to(device), labels.to(device)
        inputs = inputs.float()
        optimizer.zero_grad()
        outputs, outs = cnn(inputs)
        loss = ce_loss(outputs, labels)
        loss.backward()
        optimizer.step()
        _, predicted = torch.max(outputs, 1)
        cumulative_accuracy += get_accuracy(labels, predicted)
return cnn, outs

cnn.eval()

AttributeError: 'tuple' object has no attribute 'eval'

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions