It is recommended to use the WAMR SDK tools to build a project that integrates the WAMR. This document introduces how to build the WAMR minimal product which is vmcore only (no app-framework and app-mgr) for multiple platforms.
By including the script runtime_lib.cmake
under folder build-scripts in CMakeList.txt, it is easy to build minimal product with cmake.
# add this into your CMakeList.txt
include (${WAMR_ROOT_DIR}/build-scripts/runtime_lib.cmake)
add_library(vmlib ${WAMR_RUNTIME_LIB_SOURCE})
The script runtime_lib.cmake
defines a number of variables for configuring the WAMR runtime features. You can set these variables in your CMakeList.txt or pass the configurations from cmake command line.
-
WAMR_BUILD_PLATFORM: set the target platform. It can be set to any platform name (folder name) under folder core/shared/platform.
-
WAMR_BUILD_TARGET: set the target CPU architecture. Current supported targets are: X86_64, X86_32, AArch64, ARM, THUMB, XTENSA and MIPS. For AArch64, ARM and THUMB, the format is <arch>[<sub-arch>][_VFP] where <sub-arch> is the ARM sub-architecture and the "_VFP" suffix means VFP coprocessor registers s0-s15 (d0-d7) are used for passing arguments or returning results in standard procedure-call. Both <sub-arch> and "_VFP" are optional, e.g. AARCH64, AARCH64V8, AARCHV8.1, ARMV7, ARMV7_VFP, THUMBV7, THUMBV7_VFP and so on.
cmake -DWAMR_BUILD_PLATFORM=linux -DWAMR_BUILD_TARGET=ARM
-
WAMR_BUILD_INTERP=1/0: enable or disable WASM interpreter
-
WAMR_BUILD_FAST_INTERP=1/0:build fast (default) or classic WASM interpreter.
NOTE: the fast interpreter runs ~2X faster than classic interpreter, but consumes about 2X memory to hold the WASM bytecode code.
- WAMR_BUILD_AOT=1/0, default to enable if not set
- WAMR_BUILD_JIT=1/0 , default to disable if not set
-
WAMR_BUILD_LIBC_BUILTIN=1/0, default to enable if not set
-
WAMR_BUILD_LIBC_WASI=1/0, default to enable if not set
- WAMR_BUILD_MULTI_MODULE=1/0, default to disable if not set
- WAMR_BUILD_MINI_LOADER=1/0, default to disable if not set
Note: the mini loader doesn't check the integrity of the WASM binary file, developer must ensure that the WASM file is well-formed.
- WAMR_BUILD_SHARED_MEMORY=1/0, default to disable if not set
- WAMR_BUILD_THREAD_MGR=1/0, default to disable if not set
- WAMR_BUILD_LIB_PTHREAD=1/0, default to disable if not set
Note: The dependent feature of lib pthread such as the
shared memory
andthread manager
will be enabled automatically.
- WAMR_DISABLE_HW_BOUND_CHECK=1/0, default to enable if not set and supported by platform
Note: by default only platform linux/darwin/android/vxworks 64-bit will enable boundary check with hardware trap in AOT or JIT mode, and the wamrc tool will generate AOT code without boundary check instructions in all 64-bit targets except SGX to improve performance.
- WAMR_BUILD_MEMORY_PROFILING=1/0, default to disable if not set
Note: if it is enabled, developer can use API
void wasm_runtime_dump_mem_consumption(wasm_exec_env_t exec_env)
to dump the memory consumption info. Currently we only profile the memory consumption of module, module_instance and exec_env, the memory consumed by other components such aswasi-ctx
,multi-module
andthread-manager
are not included.
- WAMR_APP_THREAD_STACK_SIZE_MAX=n, default to 8 MB (8388608) if not set
Note: the AOT boundary check with hardware trap mechanism might consume large stack since the OS may lazily grow the stack mapping as a guard page is hit, we may use this configuration to reduce the total stack usage, e.g. -DWAMR_APP_THREAD_STACK_SIZE_MAX=131072 (128 KB).
Combination of configurations:
We can combine the configurations. For example, if we want to disable interpreter, enable AOT and WASI, we can run command:
cmake .. -DWAMR_BUILD_INTERP=0 -DWAMR_BUILD_AOT=1 -DWAMR_BUILD_LIBC_WASI=0 -DWAMR_BUILD_PLATFORM=linux
Or if we want to enable interpreter, disable AOT and WASI, and build as X86_32, we can run command:
cmake .. -DWAMR_BUILD_INTERP=1 -DWAMR_BUILD_AOT=0 -DWAMR_BUILD_LIBC_WASI=0 -DWAMR_BUILD_TARGET=X86_32
If you are building for ARM architecture on a X86 development machine, you can use the CMAKE_TOOLCHAIN_FILE
to set the toolchain file for cross compling.
cmake .. -DCMAKE_TOOLCHAIN_FILE=$TOOL_CHAIN_FILE \
-DWAMR_BUILD_PLATFORM=linux \
-DWAMR_BUILD_TARGET=ARM
Refer to toolchain sample file samples/simple/profiles/arm-interp/toolchain.cmake
for how to build mini product for ARM target architecture.
First of all please install the dependent packages. Run command below in Ubuntu-18.04:
sudo apt install build-essential cmake g++-multilib libgcc-8-dev lib32gcc-8-dev
Or in Ubuntu-16.04:
sudo apt install build-essential cmake g++-multilib libgcc-5-dev lib32gcc-5-dev
Or in Fedora:
sudo dnf install glibc-devel.i686
After installing dependencies, build the source code:
cd product-mini/platforms/linux/
mkdir build
cd build
cmake ..
make
By default in Linux, the interpreter, AOT and WASI are enabled, and JIT is disabled. And the build target is set to X86_64 or X86_32 depending on the platform's bitwidth.
To enable WASM JIT, firstly we should build LLVM:
cd product-mini/platforms/linux/
./build_llvm.sh (The llvm source code is cloned under <wamr_root_dir>/core/deps/llvm and auto built)
Then pass argument -DWAMR_BUILD_JIT=1
to cmake to enable WASM JIT:
mkdir build
cd build
cmake .. -DWAMR_BUILD_JIT=1
make
Please see Build and Port WAMR vmcore for Linux SGX for the details.
Make sure to install Xcode from App Store firstly, and install cmake.
If you use Homebrew, install cmake from the command line:
brew install cmake
Then build the source codes:
cd product-mini/platforms/darwin/
mkdir build
cd build
cmake ..
make
Note: WAMR provides some features which can be easily configured by passing options to cmake, please see WAMR vmcore cmake building configurations for details. Currently in MacOS, interpreter, AoT, and builtin libc are enabled by default.
VxWorks 7 SR0620 release is validated.
First you need to build a VSB. Make sure UTILS_UNIX layer is added in the VSB. After the VSB is built, export the VxWorks toolchain path by:
export <vsb_dir_path>/host/vx-compiler/bin:$PATH
Now switch to iwasm source tree to build the source code:
cd product-mini/platforms/vxworks/
mkdir build
cd build
cmake ..
make
Create a VIP based on the VSB. Make sure the following components are added:
- INCLUDE_POSIX_PTHREADS
- INCLUDE_POSIX_PTHREAD_SCHEDULER
- INCLUDE_SHARED_DATA
- INCLUDE_SHL
Copy the generated iwasm executable, the test WASM binary as well as the needed shared libraries (libc.so.1, libllvm.so.1 or libgnu.so.1 depending on the VSB, libunix.so.1) to a supported file system (eg: romfs).
Note: WAMR provides some features which can be easily configured by passing options to cmake, please see WAMR vmcore cmake building configurations for details. Currently in VxWorks, interpreter and builtin libc are enabled by default.
You need to download the Zephyr source code first and embed WAMR into it.
git clone https://github.com/zephyrproject-rtos/zephyr.git
cd zephyr/samples/
cp -a <wamr_root_dir>/product-mini/platforms/zephyr/simple .
cd simple
ln -s <wamr_root_dir> wamr
source ../../zephyr-env.sh
# Execute the ./build_and_run.sh script with board name as parameter. Here take x86 as example:
./build_and_run.sh x86
Note: WAMR provides some features which can be easily configured by passing options to cmake, please see WAMR vmcore cmake building configurations for details. Currently in Zephyr, interpreter, AoT and builtin libc are enabled by default.
-
a developerkit board id needed for testing
-
download the AliOS-Things code
git clone https://github.com/alibaba/AliOS-Things.git
-
copy <wamr_root_dir>/product-mini/platforms/alios-things directory to AliOS-Things/middleware, and rename it as iwasm
cp -a <wamr_root_dir>/product-mini/platforms/alios-things middleware/iwasm
-
create a link to <wamr_root_dir> in middleware/iwasm/ and rename it to wamr
ln -s <wamr_root_dir> middleware/iwasm/wamr
-
modify file app/example/helloworld/helloworld.c, patch as:
#include <stdbool.h> #include <aos/kernel.h> extern bool iwasm_init(); int application_start(int argc, char *argv[]) { int count = 0; iwasm_init(); ... }
-
modify file app/example/helloworld/aos.mk
$(NAME)_COMPONENTS := osal_aos iwasm
-
build source code and run For linux host:
aos make helloworld@linuxhost -c config aos make ./out/helloworld@linuxhost/binary/helloworld@linuxhost.elf
For developerkit: Modify file middleware/iwasm/aos.mk, patch as:
WAMR_BUILD_TARGET := THUMBV7M
aos make helloworld@developerkit -c config aos make
download the binary to developerkit board, check the output from serial port
able to generate a shared library support Android platform.
- need an android SDK. Go and get the "Command line tools only"
- look for a command named sdkmanager and download below components. version numbers might need to check and pick others
- "build-tools;29.0.3"
- "cmake;3.10.2.4988404"
- "ndk;21.0.6113669"
- "patcher;v4"
- "platform-tools"
- "platforms;android-29"
- add bin/ of the downloaded cmake to $PATH
- export ANDROID_SDK_HOME=/the/path/of/downloaded/sdk/
- export ANDROID_NDK_HOME=/the/path/of/downloaded/sdk/ndk/
- ready to go
Use such commands, you are able to compile with default configurations. Any compiling requirement should be satisfied by modifying product-mini/platforms/android/CMakeList.txt. For example, chaning ${WAMR_BUILD_TARGET} in CMakeList could get different libraries support different ABIs.
$ cd product-mini/platforms/android/
$ mkdir build
$ cd build
$ cmake ..
$ make
$ # check output in distribution/wasm
$ # include/ includes all necesary head files
$ # lib includes libiwasm.so
WAMR is intergrated with NuttX, just enable the WAMR in Kconfig option (Application Configuration/Interpreters).
Docker will download all the dependencies and build WAMR Core on your behalf.
Make sure you have Docker installed on your machine: macOS, Windows or Linux.
Build the Docker image:
docker build --rm -f "Dockerfile" -t wamr:latest .
Run the image in interactive mode:
docker run --rm -it wamr:latest
You'll now enter the container at /root
.