forked from apache/tvm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
193 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,182 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
# pylint: disable=import-outside-toplevel, invalid-name | ||
"""Instantiate a C++ source for profiling CUTLASS kernels.""" | ||
|
||
|
||
class Conv2dProfilerEmitter(object): | ||
"""Emit a C++ source for profiling CUTLASS kernels.""" | ||
|
||
def __init__(self): | ||
from jinja2 import Template | ||
|
||
self.template = Template( | ||
""" | ||
#include <iostream> | ||
#include "cutlass/cutlass.h" | ||
#include "cutlass/conv/kernel/default_conv2d_fprop.h" | ||
#include "cutlass/conv/device/implicit_gemm_convolution.h" | ||
#include "cutlass/util/command_line.h" | ||
#include "cutlass/util/host_tensor.h" | ||
#include "cutlass/util/reference/host/tensor_fill.h" | ||
#include "helper.h" | ||
{{OperatorDef}} | ||
using ImplicitGemm = cutlass::conv::device::ImplicitGemmConvolution<{{OperatorName}}>; | ||
struct Options { | ||
cutlass::Tensor4DCoord input_size; | ||
cutlass::Tensor4DCoord filter_size; | ||
cutlass::Tensor4DCoord padding; | ||
cutlass::MatrixCoord conv_stride; | ||
cutlass::MatrixCoord dilation; | ||
void parse(int argc, char const **args) { | ||
cutlass::CommandLine cmd(argc, args); | ||
cmd.get_cmd_line_argument("n", input_size.n()); | ||
cmd.get_cmd_line_argument("h", input_size.h()); | ||
cmd.get_cmd_line_argument("w", input_size.w()); | ||
cmd.get_cmd_line_argument("c", input_size.c()); | ||
cmd.get_cmd_line_argument("k", filter_size.n()); | ||
cmd.get_cmd_line_argument("r", filter_size.h()); | ||
cmd.get_cmd_line_argument("s", filter_size.w()); | ||
int pad_h, pad_w, stride_h, stride_w, dilation_h, dilation_w; | ||
cmd.get_cmd_line_argument("pad_h", pad_h); | ||
cmd.get_cmd_line_argument("pad_w", pad_w); | ||
cmd.get_cmd_line_argument("stride_h", stride_h); | ||
cmd.get_cmd_line_argument("stride_w", stride_w); | ||
cmd.get_cmd_line_argument("dilation_h", dilation_h); | ||
cmd.get_cmd_line_argument("dilation_w", dilation_w); | ||
filter_size.c() = input_size.c(); | ||
padding = {pad_h, pad_h, pad_w, pad_w}; | ||
conv_stride = {stride_h, stride_w}; | ||
dilation = {dilation_h, dilation_w}; | ||
} | ||
cutlass::Tensor4DCoord output_size() const { | ||
auto dilated_h = (filter_size.h() - 1) * dilation.row() + 1; | ||
auto dilated_w = (filter_size.w() - 1) * dilation.column() + 1; | ||
auto h = (input_size.h() + padding.n() + padding.h() - dilated_h) / conv_stride.row() + 1; | ||
auto w = (input_size.w() + padding.w() + padding.c() - dilated_w) / conv_stride.column() + 1; | ||
return cutlass::Tensor4DCoord( | ||
input_size.n(), | ||
h, w, | ||
filter_size.n()); | ||
} | ||
}; | ||
double profile_convolution(Options const &options) { | ||
using ElementOutput = typename ImplicitGemm::ElementC; | ||
using ElementInputA = typename ImplicitGemm::ElementA; | ||
using ElementInputB = typename ImplicitGemm::ElementB; | ||
auto oshape = options.output_size(); | ||
cutlass::HostTensor<ElementInputA, typename ImplicitGemm::LayoutA> tensor_a(options.input_size); | ||
cutlass::HostTensor<ElementInputB, typename ImplicitGemm::LayoutB> tensor_b(options.filter_size); | ||
cutlass::HostTensor<ElementOutput, typename ImplicitGemm::LayoutC> tensor_c(oshape); | ||
cutlass::HostTensor<ElementOutput, typename ImplicitGemm::LayoutC> tensor_ref_c(oshape); | ||
cutlass::reference::host::TensorFillRandomUniform( | ||
tensor_a.host_view(), | ||
1, | ||
ElementInputA(7), | ||
ElementInputA(-8), | ||
0); | ||
cutlass::reference::host::TensorFillRandomUniform( | ||
tensor_b.host_view(), | ||
1, | ||
ElementInputB(7), | ||
ElementInputB(-8), | ||
0); | ||
cutlass::reference::host::TensorFill( | ||
tensor_c.host_view()); | ||
cutlass::reference::host::TensorFill( | ||
tensor_ref_c.host_view()); | ||
tensor_a.sync_device(); | ||
tensor_b.sync_device(); | ||
tensor_c.sync_device(); | ||
tensor_ref_c.sync_device(); | ||
cutlass::conv::Conv2dProblemSize problem_size( | ||
options.input_size, | ||
options.filter_size, | ||
options.padding, | ||
options.conv_stride, | ||
options.dilation, | ||
options.output_size(), | ||
cutlass::conv::Mode::kCrossCorrelation, | ||
1 | ||
); | ||
using ElementComputeEpilogue = typename ImplicitGemm::ElementCompute; | ||
typename ImplicitGemm::Arguments arguments{ | ||
problem_size, | ||
tensor_a.device_ref(), | ||
tensor_b.device_ref(), | ||
tensor_c.device_ref(), | ||
tensor_c.device_ref(), | ||
{ElementComputeEpilogue(1), ElementComputeEpilogue(0)}, | ||
}; | ||
ImplicitGemm implicit_gemm_op; | ||
size_t workspace_size = implicit_gemm_op.get_workspace_size(arguments); | ||
cutlass::device_memory::allocation<uint8_t> workspace(workspace_size); | ||
auto status = implicit_gemm_op.can_implement(arguments); | ||
CUTLASS_CHECK(status); | ||
status = implicit_gemm_op.initialize(arguments, workspace.get()); | ||
CUTLASS_CHECK(status); | ||
status = implicit_gemm_op(); | ||
CUTLASS_CHECK(status); | ||
cudaEvent_t events[2]; | ||
for (auto & event : events) { | ||
cudaEventCreate(&event); | ||
} | ||
cudaEventRecord(events[0]); | ||
for (int iteration = 0; iteration < 100; ++iteration) { | ||
auto status = implicit_gemm_op(); | ||
CUTLASS_CHECK(status); | ||
} | ||
cudaEventRecord(events[1]); | ||
cudaEventSynchronize(events[1]); | ||
float runtime_ms = 0; | ||
cudaEventElapsedTime(&runtime_ms, events[0], events[1]); | ||
for (auto event : events) { | ||
(void)cudaEventDestroy(event); | ||
} | ||
return double(runtime_ms) / 100.0; | ||
} | ||
int main(int argc, char const **args) { | ||
Options options; | ||
options.parse(argc, args); | ||
std::cout << profile_convolution(options) << std::endl; | ||
return 0; | ||
} | ||
""" | ||
) | ||
|
||
def emit(self, op_def, op_name): | ||
src = self.template.render(OperatorDef=op_def, OperatorName=op_name) | ||
return src |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters