Minimal backend API for automated guideline processing with AI-powered summarization and checklist generation.
graph TD;
A[Client] -->|POST /jobs| B[Django API];
B -->|200ms response| A;
B -->|Queue Task| C[Redis Queue];
C -->|FIFO| D[Celery Worker];
D -->|Step 1| E[GPT Summarize];
E -->|Step 2| F[GPT Checklist];
F -->|Save Results| G[PostgreSQL];
A -->|GET /jobs/id| B;
B -->|Query Status| G;
G -->|Return Result| B;
B -->|Status and Result| A;
classDef client fill:#e1f5fe,stroke:#01579b,stroke-width:2px;
classDef api fill:#f3e5f5,stroke:#4a148c,stroke-width:2px;
classDef queue fill:#fff3e0,stroke:#e65100,stroke-width:2px;
classDef worker fill:#e8f5e8,stroke:#1b5e20,stroke-width:2px;
classDef gpt fill:#fce4ec,stroke:#880e4f,stroke-width:2px;
classDef db fill:#e3f2fd,stroke:#0d47a1,stroke-width:2px;
class A client;
class B api;
class C queue;
class D worker;
class E,F gpt;
class G db;
# Clone and start services
git clone https://github.com/yhskgo/avo-api.git
cd avo-api
cp .env.example .env
# Edit .env with your OPENAI_API_KEY
docker compose up --build
# Run tests (6 tests, comprehensive coverage)
docker compose --profile test run test
# API Documentation
http://localhost:8000/api/docs/POST /api/jobs→ Returnsevent_idin <200msGET /api/jobs/{event_id}→ Job status and resultsGET /api/schema/→ OpenAPI specificationGET /api/docs/→ Interactive API documentation
Tech Stack: Django + Celery + Redis + PostgreSQL for:
- Sub-200ms response: Immediate job queuing with async processing
- FIFO guarantee: Redis queues ensure order preservation
- Scalability: Horizontal worker scaling with Celery
- Reliability: PostgreSQL for persistent job state
Two-Stage GPT Chain:
- Summarize guidelines using GPT-4o-mini/GPT-3.5-turbo
- Generate actionable checklist from summary
AI Tools Used:
- IDE:VSCode:Python extensions for development environment and code debugging
- Claude: Complete system architecture, code structure, testing framework, and Docker deployment setup
- Mermaid: Interactive system architecture diagram
- OpenAPI: Automatic API documentation with drf-spectacular
- GPT Integration: Content processing pipeline with robust fallback handling
Built with extensive AI assistance for rapid, production-ready development.
